

Administrator's Guide
Purpose of this Guide

This guide serves as a focused documentation index for administrators looking for
step-by-step onboarding, deployment, configuration, and operational guidance.
This documentation is suitable for users deploying AccuKnox in real-world
cloud-native environments. This curated guide is tailored for technical administrators
and DevSecOps engineers who are looking for concrete, task-oriented onboarding
assets, installation steps, and configuration references.

AccuKnox Administrator's Guide
AccuKnox Enterprise Architecture

Core Components
Control Plane Architecture
Cloud Architecture
Externalized Storage Architecture
On-Premises Deployment Architecture
Scaling Considerations
Log & Data Storage
Customer Data Flow
Rules Engine Architecture
Integrations Architecture
Compliance Frameworks
Additional Resources
Getting Started With Technical Support
Product Documentation
Email Support and Procedures
Support Workflow
Priority Levels
Case Information Required

Video Conferencing Options
Case Resolution
Case Closure
Resources
FAQs

AccuKnox OnPrem Deployment Guide
System Requirements
Installation Steps
Use the following commands
Use of Private/Local Container Registry (or air-gapped mode)
Update the override-values.yaml
Install AccuKnox base dependencies
Install AccuKnox pre-chart
Install AccuKnox microservices chart
Install nginx ingress (if any other self-managed Kubernetes)
Verification of installation

Runtime Security Prerequisites
AccuKnox Agents
Pre-requisites

SSO Login Guide
1. Inviting a New User
2. User Receives Invitation
3. User Login Options
Notes

Onboarding Assets – High-Level Overview
Customer Environments
Cloud Onboarding Options
Kubernetes – AWS EKS / On-Prem / Fargate
Virtual Machines – EC2 / On-Prem
Container Registry
AI/ML Workloads – SageMaker / Bedrock
Deployment References

CSPM Pre-requisite for AWS
AWS Account onboarding

AWS IAM User Creation
AWS Onboarding

Onboarding AWS Organization Accounts to AccuKnox
Prerequisites
Step-by-Step Onboarding Process

Post-Onboarding
CSPM Pre-requisite for Azure
Azure Account onboarding

Rapid Onboarding (via Azure)
From AccuKnox SaaS UI

CSPM Pre-requisite for GCP
GCP Account onboarding

From AccuKnox SaaS UI
How to Deboard a Cloud Account
Kubernetes Security Onboarding

Features Supported for Kubernetes
K8s Runtime Visibility and Security
K8s Misconfiguration Scanning
K8s Identity & Entitlements Management
K8s CIS Benchmarking
DISA STIGs Support
In-Cluster Container Image Scanning
Admission Controller Support
Cluster Access to Control Plane

Cluster Onboarding
AccuKnox Agents

Cluster Onboarding with Access Keys
Onboarding

Onboard Cluster for Misconfiguration Scanning
CIS Benchmarking Compliance Scan Onboarding

Step 1: Generate an Access Token
Step 2: Onboard Your Cluster
Step 3: Deploy the Scanner Using Helm
Step 4: View Compliance Findings

Cluster Offboarding
Agents Uninstallation
Cluster Deletion

Runtime Security Deployment for Openshift
Operator Installation
ElasticSearch Integration
KubeArmor Instance Installation
Kibana Dashboard Setup

Onboarding and Deboarding VMs with Docker
Docker

Onboarding
Troubleshooting
Deboarding

Onboarding and Deboarding VMs with Systemd
Systemd
Network Requirements
Onboarding
Onboarding Worker Nodes
Troubleshooting
Deboarding

SystemD Based Non-BTF Environments
Compiling system monitor
Onboard the node

VM Onboarding using Access Keys
Overview
Pre-requisites
Onboarding
Onboarding Worker Nodes
Troubleshooting
Deboarding

In-Cluster Image Scanning with Helm
🛠 Installation Guide

Dockerhub Registry Onboarding
Prerequisites
Steps to Add a Registry
Viewing Registry Scan Details

JFrog Container Registry Onboarding
AccuKnox Support for JFrog Container Registry Scanning

CWPP Report Generation
Regex
Reports Configuration

How to Configure Custom Reports
On-demand custom Report generation
Scheduling Custom Report

RINC
Supported reports
Installation
Passing Database Credentials
Accessing RINC's web interface

Advanced
CWPP Troubleshooting

Requirements
Script To automate this process

CSPM Troubleshooting Guide
Step 1: Validate Prerequisites
Step 2: Verify Cloud Scan Status

AccuKnox Enterprise Architecture

AccuKnox's Cloud-Native Application Protection Platform (CNAPP) offers a unified
AppSec + CloudSec solution, integrating modules like ASPM, CSPM, CWPP, KIEM,
and GRC. This architecture ensures comprehensive security across the software
development lifecycle.

Core Components

Control Plane Architecture

●​ Microservices:
●​ Divy: Handles API requests.
●​ Celery: Manages asynchronous tasks.
●​ Kueue: Schedules Kubernetes-native jobs.

●​ Parser Jobs: Process asset and findings data, updating databases
accordingly.

●​ Alerts & Telemetry: Ingested via RabbitMQ, processed for real-time
insights.

●​ Secure Onboarding: Utilizes SPIFFE-based control plane for cluster
onboarding.

●​ Storage/Databases:
●​ RDS: Stores CSPM, KSPM, and ASPM data.
●​ MongoDB: Handles streaming telemetry.
●​ Neo4j: Manages metadata for KIEM.

●​ Integrations: Interfaces with SIEM tools (e.g., Splunk, Rsyslog) and
ticketing systems (e.g., JIRA, Slack).

Key Components

1.​ Playbook job scheduling: Microservices (Divy), Kueue scheduler, Celery
tasks

2.​ Parser jobs for asset + findings database
3.​ Alerts and telemetry handling via RabbitMQ
4.​ SPIFFE-based secure cluster onboarding
5.​ Storage layer: RDS, MongoDB, Neo4j
6.​ External integrations & triggers handling

Cloud Architecture

●​ SaaS and On-Prem support identical services (except AskADA AI Copilot –

SaaS only)
●​ Tenant-level feature control
●​ Models:

a.​ SaaS: AWS-managed (Aurora, S3)
b.​ On-Prem: Full in-cluster setup (for air-gapped environments)
c.​ Externalized: Uses customer DB/storage

Externalized Storage Architecture

●​ Supports deployments with customer-managed storage
●​ Enables hybrid cloud use cases
●​ Flexible DB integration (e.g., existing RDS, MongoDB, etc.)

On-Premises Deployment Architecture

●​ K8s-native deployment
●​ No reliance on AWS managed services
●​ Designed for high-security & compliance environments

Deployment Details →

Scaling Considerations

https://help.accuknox.com/getting-started/accuknox-arch/images/deep-arch/https://help.accuknox.com/getting-started/deployment-models/

Key Choke Points

1.​ Playbook Jobs: One AWS account = 272 jobs across regions
●​ Kueue ensures tenant-aware resource allocation

2.​ Parser Jobs: Celery tasks parse reports & update DB
3.​ Telemetry Overload: Managed via thresholds & redirection to SIEM

Noisy Neighbor Mitigation

●​ Celery replicated per tenant (currently manual)
●​ Kueue isolates playbook jobs per tenant
●​ RMQ overload handled by telemetry offload

Log & Data Storage
●​ RDS: CSPM, KSPM, ASPM (per-tenant tables)
●​ MongoDB: Telemetry logs (per-tenant collections)
●​ Neo4j: GraphDB for metadata (KIEM), expanding to assets/findings in v3.0

Customer Data Flow

1.​ Playbook execution (on-prem or SaaS)
2.​ Report generated (assets/findings JSON)
3.​ Sent to control plane via Artifact API (token-based)
4.​ Saved in S3 + Celery task triggered
5.​ Celery pulls from S3 and parses
6.​ DB + Graph updated
7.​ UI fetches via Divy APIs

Rules Engine Architecture

●​ Parser emits events → Rules Engine evaluates
●​ Tenant-specific rule specs evaluated
●​ Actions (e.g., notifications, tickets) sent as Celery tasks
●​ Fully asynchronous, scalable via queues

Integrations Architecture

●​ CLI-based: TruffleHog, Sonarqube, Trivy, Zap, Kubebench
●​ API-based: Checkmarx, Nessus
●​ SIEM: One-way push (e.g., Splunk, Sentinel)

●​ Ticketing: Bidirectional (e.g., Jira, ServiceNow)

Integration Timelines

●​ CLI-based: 1 sprint
●​ API-based: 2–3 weeks
●​ SIEM: 1 sprint
●​ Ticketing: 3–5 sprints

Explore Integrations →

Compliance Frameworks

Supports over 30 regulatory standards, including:

●​ General: ISO 27001, PCI DSS, SOC2.
●​ Industry-Specific: HIPAA, GDPR.

Additional Resources

https://help.accuknox.com/integrations/

●​ Deployment Models
●​ Integrations Playbook
●​ Telemetry Logs
●​ On-Prem Installation Guide

Info

AccuKnox offers rapid protection for Kubernetes and other cloud workloads using
Kernel Native Primitives like AppArmor, SELinux, and eBPF. For assistance in
planning your cloud security strategy, feel free to reach out.

Getting Started With Technical Support

AccuKnox has active support teams across global regions. The Technical Support
team is highly skilled in AccuKnox products and understands customer needs.

As a customer with AccuKnox Support, you're entitled to a number of predetermined
technical support contacts who can help debug critical issues and provide solutions.
These contacts must be specifically named individuals.

You can:

●​ Create support cases
●​ Search the AccuKnox Knowledge Base
●​ Review product documentation

Roles and Responsibilities

Role Description
Customer • Communicate business impacts of technical

issues​
 • Provide logs, debug data, diagnostic files, etc.​
 • Respond timely to information or follow-up
requests​
 • Engage internal teams as needed​
 • Have internet access for meetings

https://help.accuknox.com/getting-started/deployment-models/
https://help.accuknox.com/how-to/playbook-integrations/
https://help.accuknox.com/integrations/telemetry-logs/
https://help.accuknox.com/getting-started/on-prem-installation-guide/
https://help.accuknox.com/

AccuKnox Solutions
Engineer

• Understand business impact​
 • Provide technical product expertise​
 • Troubleshoot and resolve issues​
 • Share timely status updates

AccuKnox Technical
Support Manager

• Ensure high-level technical expertise in Support​
 • Monitor critical issues

AccuKnox Customer
Success Manager

• Understand customer requirements​
 • Recommend matching AccuKnox solutions

Product Documentation
●​ 📘 AccuKnox Help Center
●​ 🎓 Certification & Training: On-demand and instructor-led sessions to enable

your team

Email Support and Procedures
●​ Email: support@accuknox.com
●​ Or raise a support ticket via: AccuKnox Support Portal

 Note:

o First-time users must sign up via Jira

o Try Incognito Mode if you face access issues

o Support responds within <24 working hours

Support Workflow
●​ Once a ticket is created, users can track the status via ticket ID

Priority Levels
Technical Priority Description

P1 - Critical Product is completely non-functional; critical
business impact

P2 - High Product is severely degraded; severe business impact

https://help.accuknox.com/
https://www.accuknox.com/certification/

P3 - Medium General errors; business still functional
P4 - Informational Assistance or basic info; minimal/no business impact

🧠 Related article: Technical Support Case Priorities — visit the Knowledge Base for
examples.

Case Information Required

Please have the following information ready when submitting a case:

1.​ Contact Name and Organization
2.​ Business Impact and project context
3.​ Affected Product
4.​ Priority Level
5.​ Relevant screenshots, logs, diagnostic files
6.​ Was it working before? When did it break? Any changes?
7.​ Error messages (if any)
8.​ Frequency and timing of the issue

Technical Support may ask for further info or coordinate with your technical team to
isolate known issues.

Video Conferencing Options
●​ AccuKnox may initiate Zoom or Google Meet sessions.
●​ Sessions are scheduled for 30 minutes with a predefined agenda.
●​ If you're >5 minutes late or absent, the session may be rescheduled.
●​ Live troubleshooting will follow the session.

Case Resolution

A case is considered resolved when one of the following is provided:

●​ Official product behavior documentation
●​ A verified workaround
●​ A software update/patch
●​ A fix in documentation

Case Closure

A case is closed when:

●​ Customer confirms the resolution, or
●​ There's no response for a reasonable period

In rare cases (e.g., customer unresponsiveness or unprofessional behavior), AccuKnox
may close the case independently.​
 Closed cases may be reopened within 3 days.

Resources
●​ 📄 On-Prem Deployment Guide
●​ 📘 Help Portal

FAQs

1. Can we engage on a messaging stream for continuous support?

Yes, we can create a temporary Slack channel for real-time communication.

2. What are the system requirements for On-Prem deployment?

Node
s

vCPU
s

RAM (GB) Disk
(GB)

4 8 32 256

5 4 16 128

3. Is a completely air-gapped On-Prem environment supported?

https://help.accuknox.com/
https://help.accuknox.com/

✅ Yes, AccuKnox fully supports air-gapped environments.

4. How do upgrades work and how frequently are updates released?
●​ Software updates are released monthly
●​ Latest package is shared with installation instructions
●​ AccuKnox Engineering/DevSecOps teams are available to assist if required

🔗 Release Notes and FAQs

AccuKnox OnPrem Deployment Guide

Onboarding Steps for AccuKnox

The onboarding process for AccuKnox's on-prem security solution consists of four key
steps that the user must complete. Let's go through each step in a thorough,
step-by-step manner:

https://help.accuknox.com/faqs/

Step 1: Hardware & Prerequisites

●​ Verify hardware, email user, and domain configurations.
●​ Ensure your environment meets all requirements.
●​ Time estimate: Varies, allocate sufficient time for review and adjustments.

Step 2: Staging AccuKnox Container Images (For

airgapped environments only)

●​ Stage AccuKnox container images in the airgapped setup.
●​ Reconfirm hardware, email user, and domain requirements.
●​ Time estimate: ~1 hour.

Step 3: Installation

●​ Install the AccuKnox system within your environment.
●​ Ensure all prerequisites remain satisfied.
●​ Time estimate: ~45 minutes.

Step 4: Verification/Validation

●​ Confirm all previous steps were completed successfully.
●​ Validate hardware, email user, and domain configurations.
●​ Time estimate: ~1 hour.

AccuKnox onprem deployment is based on Kubernetes native architecture.

High-Level Architecture Overview

AccuKnox onprem deployment is based on Kubernetes native architecture.

AccuKnox OnPrem k8s components

Microservices

Microservices implement the API logic and provide the corresponding service
endpoints. AccuKnox uses Golang-based microservices for handling streaming data
(such as alerts and telemetry) and Python-based microservices for other
control-plane services.

Databases

PostgreSQL is used as a relational database and MongoDB is used for storing JSON
events such as alerts and telemetry. Ceph storage is used to keep periodic scanned
reports and the Ceph storage is deployed and managed using the Rook storage
operator.

Secrets Management

Within the on-prem setup, there are several cases where sensitive data and
credentials have to be stored. Hashicorp's Vault is used to store internal (such as DB
username/password) and user secrets (such as registry tokens). The authorization is

managed purely using the k8s native model of service accounts. Every microservice
has its service account and uses its service account token automounted by k8s to
authenticate and subsequently authorize access to the secrets.

Scaling

K8s native horizontal and vertical pod autoscaling is enabled for most microservices
with upper limits for resource requirements.

AccuKnox-Agents

Agents need to be deployed in target k8s clusters and virtual machines that have to
be secured at runtime and to get workload forensics. Agents use Linux native
technologies such as eBPF for workload telemetry and LSMs (Linux Security
Modules) for preventing attacks/unknown execution in the target workloads. The
security policies are orchestrated from the AccuKnox onprem control plane.
AccuKnox leverages SPIFFE/SPIRE for workload/node attestation and certificate
provisioning. This ensures that the credentials are not hardcoded and automatically
rotated. This also ensures that if the cluster/virtual machine has to be deboarded
then the control lies with the AccuKnox control plane.

System Requirements
Worker Node Requirements

Nodes vCPUs RAM
(GB)

Disk
(GB)

6 4 16 256

Kubernetes Requirements

●​ Ingress Controller (load balancers)
●​ For access to the application

●​ Persistent Volumes (PV), provisioner/controller (block device/disks)

●​ Used as data storage for SQL, MongoDB, scanned artifacts
●​ Other internal app usages

●​ DNS CNAME provisioning
●​ Needed for application access & communication
●​ Certs would use this CNAME so that address changes won't

impact the cert validation
●​ Email account configuration

●​ Need email username, and password
●​ Used for user sign-in, password change, scan notification,

sending reports

Jump Host

Jump Host Pre-requisites

Tool Version Install Command

jq 1.6 apt install jq

unzip x.x apt install unzip

yq v4.40.x VERSION=v4.40.5 && BINARY=yq_linux_amd64 && wget
https://github.com/mikefarah/yq/releases/download/${VERSIO
N}/${BINARY}.tar.gz -O - | tar xz && mv ${BINARY} /usr/bin/yq

helm v3.x.x curl -s
https://raw.githubusercontent.com/helm/helm/main/scripts/g
et-helm-3 | bash

kubectl Supported
by your k8s
cluster

-

aws v2 curl
"https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o
"awscliv2.zip" && unzip awscliv2.zip && sudo . /aws/install
--bin-dir /usr/local/bin --install-dir /usr/local/aws-cli --update

docker v20.xx apt install docker.io

https://github.com/mikefarah/yq

Storage 80GB -

Installation Steps

●​ Onprem Deployment Installation Document (this document)
●​ Helm charts archive
●​ Kubectl and Helm tools are pre-requisite tools for using these helm charts

Use the following commands
tar xvf accuknox-helm-charts.tgz
cd Helm-charts

Use of Private/Local Container Registry (or air-gapped mode)
If you want to use your private/local registry as the exclusive source of images for the
entire cluster, please install the accuknox-onprem-mgr component first.

Value Description Provider

registry.us
ername

Registry User Customer

registry.pa
ssword

Registry Password Customer

registry.ad
dress

The registry server address Customer

ecr.user Credential to pull images
from AccuKnox registry

AccuKnox

ecr.passw
ord

Credential to pull images
from AccuKnox registry

AccuKnox

cd airgapped-reg

configure aws cli with AccuKnox provided secrets
aws configure

connect to docker Accuknox docker registry
aws ecr get-login-password --region us-east-2 | docker login --username AWS
--password-stdin 956994857092.dkr.ecr.us-east-2.amazonaws.com

connect to airgapped registry
docker login <registry_address>

upload images to private registry
. /upload_images.sh <registry_address>
. /upload_onboarding_images.sh <registry.address>

upload helm charts to private registry
. /upload_helm.sh <registry.address>

create a namespace
MGR_NS="accuknox-onprem-mgr"
CERT_MGR_NS="cert-manager"
kubectl create ns $MGR_NS
kubectl create ns $CERT_MGR_NS

kubectl create secret docker-registry airgapped-reg --docker-server=<registry.address>
--docker-username=<registry.username> --docker-password=<registry.password> -n
$MGR_NS

kubectl create secret docker-registry airgapped-reg --docker-server=<registry.address>
--docker-username=<registry.username> --docker-password=<registry.password> -n
$CERT_MGR_NS

<registry_address> can include port as well

. /install-certmanager.sh <registry_address>

. /install-onprem-mgr.sh <registry_address>

kubectl apply -k .
kubectl apply -f onprem-mgr.yaml

Update the override-values.yaml

[ONLY FOR air-gapped/private registry ENVIRONMENT]: Set
global.onprem.airgapped to true in override-values.yaml file.

Before you start

●​ set your domain name in the override values by changing by your domain
●​ set your ssl preferences in the override values by changing the ssl block
●​ If you wish to bring in your own MongoDB, PostgreSQL, NFS share or S3,

disable global.postgres.airgapped and global.mongodb.enabled
rookceph.enabled in override-values.yaml.

If the environment is OpenShift then set:

global:
 platform: "openshift"`

If environment is airgapped or using private registry make
ssl.certmanager.install:"false"

ssl:
 certmanager:
 install: false

Auto-generated self-signed certificate

We auto generate the needed self signed certificates for the client. To enabled this
option, the ssl section the override values file should be set as follow:

ssl:
 selfsigned: true
 customcerts: false

Certificate signed by a known authority

The client provides a certificate signed by a known signing authority To enable this
option, the ssl section the override values file should be set as follow:

ssl:
 selfsigned: false
 customcerts: true

Self-signed certificates (provided by the customer)

The client provides a self signed certificate. To enabled this option, the ssl section the
override values file should be set as follow:

ssl:
 selfsigned: true
 customcerts: true

AccuKnox installation package will contain override-values.yaml file that contains
installation-specific options to be configured.

1.​ override to your domain
2.​ set your ssl preferences in the override values by changing the ssl block.

Install AccuKnox base dependencies
kubectl create namespace accuknox-chart
helm upgrade --install -n accuknox-chart accuknox-base accuknox-base-chart
--create-namespace -f override-values.yaml

IMPORTANT

Some resources deployed in the above step require some time to provision. If the
user executes the next command without waiting for the proper provisioning of the
previous command the installation may break and will need to start over.

Run the below script to make sure that the provisioning was done succesfully.

while true
do
 status=$(kubectl get cephcluster -n accuknox-ceph rook-ceph
-o=jsonpath='{.status.phase}')
 [[$(echo $status | grep -v Ready | wc -l) -eq 0]] && echo "You can proceed" && break
 echo "wait for initialization"
 sleep 1
done

Install AccuKnox pre-chart
IMPORTANT

Contact your AccuKnox representative to acquire the credentials for ecr.user and
ecr.password values.

Value Description Provider

email.user Email user will send signup
invites, reports, etc.

Customer

email.password Email Password Customer

email.host The Email server address Customer

email.from The Email sender address
(noreply@domain.com)

Customer

ecr.user Credential to pull images
from AccuKnox registry

AccuKnox

ecr.password Credential to pull images
from AccuKnox registry

AccuKnox

global.externalServices.p
ostgres.user

Postgres username, if using
an external DB

Customer

global.externalServices.p
ostgres.password

Postgres password, if using
an external DB

Customer

global.externalServices.p
ostgres.host

Postgres host, if using an
external DB

Customer

global.externalServices.
mongo.user

Mongodb username, if using
an external DB

Customer

global.externalServices.
mongo.password

Mongodb password, if using
an external DB

Customer

global.externalServices.
mongo.host

Mongodb host, if using an
external DB

Customer

global.externalServices.n
fs.server

NFS server address Customer

global.externalServices.s
3.host

S3 datastore host Customer

global.externalServices.s
3.port

S3 datastore port Customer

global.externalServices.s
3.accessKey

S3 access key Customer

global.externalServices.s
3.secretKey

S3 secret access key Customer

global.externalServices.s
3.bucket

S3 bucket name Customer

helm upgrade --install -n accuknox-chart accuknox-pre pre-chart --create-namespace -f
override-values.yaml --set global.email.from="" --set global.email.user="" --set
global.email.password="" --set global.email.host="" --set ecr.user="" --set ecr.password=""

Or, if using an external PostgreSQL or Mongo DB,

helm upgrade accuknox-pre pre-chart \
 --install \
 -namespace accuknox-chart \
 --create-namespace \
 -values override-values.yaml \
 --set global.email.user="" \
 --set global.email.password="" \
 --set global.email.host="" \
 --set ecr.user="" \
 --set ecr.password="" \
 --set global.externalServices.postgres.user="" \
 --set global.externalServices.postgres.password="" \
 --set global.externalServices.postgres.host="" \
 --set global.externalServices.mongo.user="" \
 --set global.externalServices.mongo.password="" \
 --set global.externalServices.mongo.host=""

Install AccuKnox microservices chart

Value Description Provider

email.us
er

Email user will send signup
invites, reports, etc.

Custom
er

email.pa
ssword

Email Password Custom
er

email.h
ost

The Email server address Custom
er

email.fr
om

The Email sender address (e.g.,
noreply@domain.com)

Custom
er

helm upgrade --install -n accuknox-chart accuknox-microservice
accuknox-microservice-chart --set global.email.user="" --set global.email.from="" --set
global.email.password="" --set global.email.host="" --create-namespace -f
override-values.yaml

DNS Mapping

Run the following script to generate the records you should add to your DNS zone.

. /generate_dns_entries.sh

Installing certificates

Certificates signed by known authority

. /install_certs.sh <certificate_path> <certificate_key_path> <ca_path>

Self-signed certificates (provided by customer)

Install nginx ingress (if any other self-managed Kubernetes)
1.​ Install the nginx ingress chart

cd airgapped-reg/addons

helm upgrade --install ingress-nginx ingress-nginx \
 --repo https://kubernetes.github.io/ingress-nginx \
 --namespace ingress-nginx --create-namespace \
 --version 4.11.2 -f ingress-nginx.yaml

1.​ Update the domains in ingress.yaml and apply it

kubectl apply -f ingress.yaml

Verification of installation
After successful installation, you should be able to access the following URLs:

●​ https://frontend.<your-domain.com>/ — Access the Sign-in page.
●​ https://cspm.<your-domain.com>/admin/ — Access the CSPM Admin

page.
●​ https://cwpp.<your-domain.com>/cm/ — Access the CWPP Configuration

Management page.

Runtime Security Prerequisites

In SaaS model of deployment the AccuKnox CNAPP will be hosted in our cloud
environment and the agents deployed on the workloads will connect with the SaaS.

AccuKnox Agents

Deploymen
ts

Deployment
Type

KubeArmor DaemonSet

Shared
Informer
Agent

Deployment

Feeder
Service

Deployment

Policy
Enforcemen
t

Deployment

Discovery
Engine
Agent

Deployment

●​ ​
It is assumed that the user has some basic familiarity with Kubernetes,
kubectl and helm. It also assumes that you are familiar with the AccuKnox
opensource tool workflow. If you're new to AccuKnox itself, refer first to
opensource installation

●​ It is recommended to have the following configured before onboarding:
a.​ Kubectl
b.​ Helm

Pre-requisites
Minimum Resource required

https://help.accuknox.com/getting-started/open-source/
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/

Deploymen
ts

Resource
Usage

Ports Connect
ion Type

AccuKnox Endpoint

KubeArmor CPU: 200 m,
Memory: 200 Mi

- - -

Agents
Operator

CPU: 50 m,
Memory: 50 Mi

8081,

9090

Outboun
d

*.accuknox.com:8081 -→
SPIRE Access

*.accuknox.com:9090 -→
SPIRE Health Check

Discovery
Engine

CPU: 200 m,
Memory: 200 Mi

- - -

Shared
Informer
Agent

CPU: 20 m,
Memory: 50 Mi

3000 Outboun
d

*.accuknox.com:3000 -→
knox-gateway

Feeder
Service

CPU: 50 m,
Memory: 100 Mi

3000 Outboun
d

*.accuknox.com:3000 -→
knox-gateway

Policy
Enforceme
nt

CPU: 10 m,
Memory: 20 Mi

443 Outboun
d

*.accuknox.com:443 -→
Policy Provider Service

●​ These ports need to be allowed through firewall.

SSO Login Guide

This guide covers the complete process from inviting a new user to logging in with
SSO.

1. Inviting a New User

Log in to your AccuKnox dashboard.

Navigate to "User Management" in the left sidebar menu. Click the "User +" button in
the top right corner of the Users page.

In the "Invite User" form, fill out the following details and hit send.

Note

You can view pending invitations in the "Pending Invites" tab on the Users page. You
can resend or revoke invitations from this tab. Viewing all permissions of a user is
possible via the main tab.

2. User Receives Invitation

The invited user will receive containing a link to accept the invitation and set up their
account if they haven't already done so.

3. User Login Options

Users can log in to AccuKnox using two methods:

Option A: Traditional Login

1.​ Go to the AccuKnox login page.
2.​ Enter the email address and password.
3.​ Click "Sign In".

Note

This requires you to use the MFA (multi-factor authentication) code if it was enabled
during the invitation process. MFA is required for every sign-in attempt.

Option B: Single Sign-On (SSO) with Google

1.​ Go to the AccuKnox login page.
2.​ Look for "Or login with" at the bottom of the form.
3.​ Click on the "Google" button.
4.​ If not already signed in to Google, enter Google account credentials.
5.​ Grant any necessary permissions for AccuKnox.

Note

If you are already signed in to Google, you will be automatically logged in to
AccuKnox. No need for MFA in this case.

Notes

●​ SSO is currently only supported for Google accounts.
●​ Users must be invited with their Gmail address to use Google SSO.

●​ For the best experience, use the same email address for invitation and
login.

●​ If you encounter any issues, contact your AccuKnox administrator or
support team.

●​ Emails with + modifiers (e.g., test+stable@gmail.com or
example+solutions@gmail.com) are not supported for SSO. Please use a
base email address.

Onboarding Assets – High-Level
Overview

Customer Environments

Cloud:

●​ AWS Accounts
●​ Azure Accounts
●​ AWS SageMaker / Bedrock

Data Center / Hybrid:

●​ Kubernetes Clusters (EKS / On-Prem / Fargate)
●​ Virtual Machines (EC2 / On-Prem)

Workload Types:

●​ K8s Clusters
●​ Virtual Machines
●​ Serverless (Fargate)
●​ AI/ML Services (SageMaker, Bedrock)

Security and Telemetry Flow:

●​ Agentless scan initiated from SaaS
●​ CNAPP control plane processes telemetry
●​ Alerts and detections sent to SIEM

Cloud Onboarding Options

●​ Fully Agentless Mode
●​ Account/Subscription Onboarding:
●​ CloudFormation (recommended)
●​ Terraform
●​ Manual
●​ AWS Organization Unit Onboarding:
●​ Using cross-account tenant roles

Kubernetes – AWS EKS /
On-Prem / Fargate

Risk Assessment

●​ CIS Benchmarks
●​ Misconfigurations
●​ KIEM Policies
●​ Agentless methods:
●​ Remote scanning via kubeconfig
●​ Kubernetes job-based scanning

Runtime Security & Hardening

●​ Helm-based installation
●​ In-cluster image scanning:
●​ Operator and job-based deployment via Helm

Fargate Runtime

●​ Supported via sidecar model
●​ Deployable using Helm or Kubernetes manifests

Virtual Machines – EC2 / On-Prem

●​ Misconfiguration scanning via cloud account onboarding (agentless)
●​ Risk assessment / STIGs scanning requires lightweight VM agent

Container Registry

SaaS-Based Scanning

●​ Registry onboarded via control plane
●​ Credentials: Username + API Token

On-Prem Scanning

●​ Requires AccuKnox collector deployed on VM
●​ Local scanning of registries enabled

AI/ML Workloads – SageMaker /
Bedrock

●​ Fully agentless
●​ Selectable during cloud account onboarding:
●​ General Cloud Assets
●​ General Cloud + AI/ML Assets

Deployment References

●​ Separate detailed documentation provided for Helm charts, job
configurations, and onboarding automation (CloudFormation, Terraform).

CSPM Pre-requisite for AWS

When the AccuKnox control plane is hosted in a cloud environment, scanning is
performed using Cloud account Readonly Access permissions.

AWS onboarding requires creation of an IAM user. Please follow the following steps
to provide a user with appropriate read access:

Step 1: Navigate to IAM → Users and click on Add Users

Step 2: Give a username to identify the user

Step 3: In the "Set Permissions" screen:

a. Select "Attach policies directly"

b. Search "ReadOnly", Filter by Type: "AWS managed - job function" and select the
policy

c. Search "SecurityAudit", Filter by Type: "AWS managed - job function" and select the
policy

Step 4: Finish creating the user. Click on the newly created user and create the
Access key and Secret Key from the Security Credentials tab to be used in the
AccuKnox panel

AWS Account onboarding

In this section we can find the steps to onboard an AWS cloud account to the
AccuKnox SaaS platform.

AWS IAM User Creation

Please follow the following steps to provide a user with appropriate read access:

Step 1: Navigate to IAM → Users and click on Add Users

Step 2: Give a username to identify the user

Step 3: In the "Set Permissions" screen:

a. Select "Attach policies directly"

b. Search "ReadOnly", Filter by Type: "AWS managed - job function" and select the
policy

c. Search "SecurityAudit", Filter by Type: "AWS managed - job function" and select the
policy

Step 4: Finish creating the user. Click on the newly created user and create the
Access key and Secret Key from the Security Credentials tab to be used in the
AccuKnox panel

AWS Onboarding

In this example we are onboarding AWS account using the Access Keys method.

Step 1: To onboard Cloud Account Navigate to Settings→cloud Accounts

Step 2: In the Cloud Account Page select Add Account option

Step 3: Select the AWS option

Step 4: In the next Screen select the labels and Tags field from the dropdown Menu.

Step 5: After giving labels and Tag in the Next Screen Provide the AWS account’s
Access Key and Secret Access Key ID and Select the Region of the AWS account.

Step 6: AWS account is added to the AccuKnox using Access Key Method. We can
see the onboarded cloud account by navigating to Settings→cloud Accounts option.

Onboarding AWS Organization
Accounts to AccuKnox

Managing security across multiple AWS accounts is complex. AWS Organizations
simplifies this by grouping accounts under one structure. AccuKnox enhances this
by enabling organization-level onboarding—removing the need to add accounts
individually. This ensures centralized visibility, consistent policy enforcement, and
automatic coverage for new accounts.

This guide explains how to onboard your AWS Organization root account to
AccuKnox.

Prerequisites

●​ You must have administrative access to your AWS Management Account
and have permissions to deploy CloudFormation Stackset across the
Organization.

●​ You need the AWS Organization ID of your root organization.

Step-by-Step Onboarding
Process

Follow these steps to connect your AWS Organization to AccuKnox:

1. Initiate Account Onboarding

In the AccuKnox platform, navigate to Cloud Security → Cloud Accounts from the
left-hand navigation menu. Select the Organization button, and then select
Onboard Account.

2. Configure Organization Account Type and Labels

Select Organization Account as the account type.

Next, select existing labels or create new ones to associate with all assets that will be
discovered within this AWS Organization.

3. Enter AWS Organization Details

●​ Log in to the AWS Console → go to AWS Organizations.

●​ Copy your Organization ID (e.g., r-xxxxxxxxxx).

●​ You must use the root organization account.
●​ In AccuKnox, paste the ID into the AWS Organization ID field.
●​ Select the AWS regions where your assets are located.

Note

At present, all assets discovered under this organization will inherit these selected
labels. Granular labeling for individual assets will be an enhancement in future
updates.

4. Enable Auto-Connect & Launch StackSet

●​ Toggle Automatically connect to new accounts (optional).
●​ Click Launch CloudFormation StackSet to open the AWS Console.

5. Create the Stack in AWS

●​ Scroll down, check the box: "I acknowledge that AWS CloudFormation
might create IAM resources..."

●​ Click Create stack.

6. Wait for StackSet Deployment

●​ Wait until the status shows CREATE_COMPLETE.

7. Copy Role ARN

●​ Go to the Outputs tab of the StackSet.
●​ Copy the value of RoleArnInManagementAccount.

8. Connect in AccuKnox

●​ Paste the ARN in the Role ARN field.
●​ Click Connect.

9. Confirm Onboarding

●​ You’ll be redirected to the Cloud Accounts page.
●​ Refresh the page to see your AWS Organization listed.

Post-Onboarding

Once your AWS Organization is successfully onboarded:

●​ Asset Discovery: AccuKnox will start an inventory discovery process across
all member accounts in the selected regions.

●​ Security Scans: Automated security scans will be scheduled to assess your
cloud resources for misconfigurations, vulnerabilities, and compliance
violations.

●​ Dashboard Population: Data will begin to populate your AccuKnox
dashboards, providing insights into your organization's security posture.
This may take some time depending on the size and complexity of your
AWS environment.

You have now successfully onboarded your AWS Organization to AccuKnox,
enabling comprehensive, centralized cloud security management.

CSPM Pre-requisite for Azure

When the AccuKnox control plane is hosted in a cloud environment, scanning is
performed using Cloud account Readonly Access permissions.

For Azure Onboarding it is required to register an App and giving Security read
access to that App from the Azure portal.

Step 1: Go to your Azure Portal and search for App registrations and open it

Step 2: Here click on New registration

Step 3: Give your application a name, remember this name as it will be used again
later, For the rest keep the default settings

Step 4: Now your application is created, save Application ID and Directory ID as they
will be needed to for onboarding on AccuKnox Saas and then click on ‘Add a
certificate or secret’

Step 5: Click on new client secret and enter the name and expiration date to get
secret id and secret value, save this secret value as this will also be needed for
onboarding.

Step 6: Next, go to API permissions tab and click on 'Add permission'

Step 7: On the screen that appears, click on 'Microsoft Graph'

Step 8: Next, select Application Permissions and then search for Directory.Read.All
and click on Add permissions

Step 9: Select ‘Grant Admin Consent’ for Default Directory and click on ‘Yes’

Step 10: Now we need to give Security read permissions to this registered Application
, to do that go to subscriptions

Step 11: First save the subscription ID and click on the subscription name , here it is
“Microsoft Azure Sponsorship“

Step 12: Navigate to Access control(IAM) and go to Roles , here select Add and Add
role assignment

Step 13: Search for “Security Reader” Job function Role, select it and press next

Step 14: In the member section click on Select members it will open a dropdown
menu on the right hand side

Step 15: Here search for the Application that you registered in the beginning , select
the application and click on review and assign.

Step 16: Similarly, we have to add another role. This time, search for Log Analytics
Reader. Select it and click next

Step 17: Now, click on Select members, select the application that was created
similar to the previous role. Finally, click on Review and Assign.

Azure Account onboarding

In this section we can find the steps to onboard an Azure cloud account to the
AccuKnox SaaS platform

Rapid Onboarding (via Azure)

For Azure Onboarding it is required to register an App and giving Security read
access to that App from the Azure portal.

Step 1: Go to your Azure Portal and search for App registrations and open it

Step 2: Here click on New registration

Step 3: Give your application a name, remember this name as it will be used again
later, For the rest keep the default settings

Step 4: Now your application is created, save Application ID and Directory ID as they
will be needed to for onboarding on AccuKnox Saas and then click on ‘Add a
certificate or secret’

Step 5: Click on new client secret and enter the name and expiration date to get
secret id and secret value, save this secret value as this will also be needed for
onboarding.

Step 6: Next, go to API permissions tab and click on 'Add permission'

Step 7: On the screen that appears, click on 'Microsoft Graph'

Step 8: Next, select Application Permissions and then search for Directory.Read.All
and click on Add permissions

Step 9: Select ‘Grant Admin Consent’ for Default Directory and click on ‘Yes’

Step 10: Now we need to give Security read permissions to this registered Application
, to do that go to subscriptions

Step 11: First save the subscription ID and click on the subscription name , here it is
“Microsoft Azure Sponsorship“

Step 12: Navigate to Access control(IAM) and go to Roles , here select Add and Add
role assignment

Step 13: Search for “Security Reader” Job function Role, select it and press next

Step 14: In the member section click on Select members it will open a dropdown
menu on the right hand side

Step 15: Here search for the Application that you registered in the beginning , select
the application and click on review and assign.

Step 16: Similarly, we have to add another role. This time, search for Log Analytics
Reader. Select it and click next

Step 17: Now, click on Select members, select the application that was created
similar to the previous role. Finally, click on Review and Assign.

From AccuKnox SaaS UI

Configuring your Azure cloud account is complete, now we need to onboard the
cloud account onto AccuKnox Saas Platform.

Step 1: Go to settings→ Cloud Account and click on Add Account

Step 2: Select Microsoft Azure as Cloud Account Type

Step 3: Select or create label and Tags that will be associated with this Cloud
Account

Step 4: Enter the details that we saved earlier during the steps for app registration
and subscription id from subscriptions in azure portal and click on connect

Step 5: After successfully connecting your cloud account will show up in the list

CSPM Pre-requisite for GCP

When the AccuKnox control plane is hosted in a cloud environment, scanning is
performed using Cloud account Readonly Access permissions.

Note: Make sure the Below API Library is enabled in your GCP Account for
onboarding into AccuKnox SaaS:

1.​ Compute Engine API
2.​ Identity and Access Management (IAM) API
3.​ Cloud Resource Manager API
4.​ Cloud Functions API
5.​ KMS API
6.​ Kubernetes API
7.​ Cloud SQL Admin API

For GCP there is a requirement for IAM Service Account Access.

Step 1: Log into your Google Cloud console and navigate to IAM & Admin choose
“Roles“ and Click “Create Role“

Step 2: Name the “Role” and Click “Add Permission”

Step 3: Use the Service: storage filter then value as “storage.buckets.getIamPolicy“

Step 4: Choose the permission and Click “Add“ then Click Create in the same page.

Step 5: In the Navigation Panel, navigate to IAM Admin > Service Accounts.

Step 6: Click on "Create Service Account"

Step 7: Enter any name that you want on Service Account Name.

Step 8: Click on Continue.

Step 9: Select the role: Project > Viewer and click Add another Role.

Step 10: Click “Add Another Role” Choose “Custom“ Select the created Custom Role.

Step 11: Click on “Continue“ and ”Done”

Step 12: Go to the created Service Account, click on that Service Account navigate to
the “Keys“ section.

Step 13: Click the “Add key“ button and “Create new key “ . Chosen Key type should
be JSON format.

Step 14: Click the “Create“ button it will automatically download the JSON key.

GCP Account onboarding

Here, we will see the steps to onboard a GCP cloud account to the AccuKnox SaaS
platform

Note: Make sure the Below API Library is enabled in your GCP Account for
onboarding into AccuKnox SaaS:

1.​ Compute Engine API
2.​ Identity and Access Management (IAM) API
3.​ Cloud Resource Manager API
4.​ Cloud Functions API
5.​ KMS API
6.​ Kubernetes API
7.​ Cloud SQL Admin API

For GCP there is a requirement for IAM Service Account Access.

Step 1: Log into your Google Cloud console and navigate to IAM & Admin choose
“Roles“ and Click “Create Role“

Step 2: Name the “Role” and Click “Add Permission”

Step 3: Use the Service: storage filter then value as “storage.buckets.getIamPolicy“

Step 4: Choose the permission and Click “Add“ then Click Create in the same page.

Step 5: In the Navigation Panel, navigate to IAM Admin > Service Accounts.

Step 6: Click on "Create Service Account"

Step 7: Enter any name that you want on Service Account Name.

Step 8: Click on Continue.

Step 9: Select the role: Project > Viewer and click Add another Role.

Step 10: Click “Add Another Role” Choose “Custom“ Select the created Custom Role.

Step 11: Click on “Continue“ and ”Done”

Step 12: Go to the created Service Account, click on that Service Account navigate to
the “Keys“ section.

Step 13: Click the “Add key“ button and “Create new key “ . Chosen Key type should
be JSON format.

Step 14: Click the “Create“ button it will automatically download the JSON key.

From AccuKnox SaaS UI

Step 1: Go to the AccuKnox SaaS. Navigate to the “Settings” → “Cloud Accounts” then
“Add Account”.

Step 2: Click the “GCP Platform”

Step 3: Create New Label and Add the Label for identifying the assets inside this
account and add a Tag optionally.

Step 4: Enter the “Project ID“, “Client Email”(The Service Account mail ID) and
“Private Key” from the downloaded File. Copy paste the entire downloaded file into
the ”Private Key” field . Then Click “Connect“

The cloud account has been onboarded successfully

How to Deboard a Cloud Account

This guide outlines the steps for offboarding a cloud account from AccuKnox SaaS.

Step 1: Login to AccuKnox SaaS and Go to Cloud Accounts under Settings.

Step 2: Select the cloud account and click “Delete” to delete the account from SaaS.

This will delete the cloud account from AccuKnox SaaS.

Kubernetes Security Onboarding

Features Supported for
Kubernetes

●​ Supported on managed (EKS, AKS, OCI) and on-prem Kubernetes clusters
●​ Works on Kubernetes versions >= 1.18
●​ All features are modular and can be enabled independently
●​ Available via AccuKnox SaaS and On-Prem Control Plane with identical UX
●​ Runtime Security requires Linux kernel >= 4.15
●​ Only egress connectivity from K8s cluster to control plane is required

K8s Runtime Visibility and
Security

Deployment Mode: DaemonSet via Operator (default) or Kubernetes manifests

Helm Command:

helm upgrade --install agents oci://public.ecr.aws/k9v9d5v2/agents-chart \
--version "v0.10.0" \
--set joinToken="[TOKEN]" \
--set spireHost="spire.demo.accuknox.com" \
--set ppsHost="pps.demo.accuknox.com" \
--set knoxGateway="knox-gw.demo.accuknox.com:3000" \
--set admissionController.enabled=false \
--set kyverno.enabled=false \
-n agents --create-namespace

Features:

●​ File, process, and network visibility
●​ MITRE-based policy enforcement (FIM, cryptojacking protection, etc.)
●​ Auto-discovery of ingress/egress and whitelisting policies

Control Plane Access:

●​ PPS: Port 443
●​ SPIRE: Port 443
●​ Knox Gateway: Port 3000

K8s Misconfiguration Scanning

Deployment Mode: Kubernetes cronjob

Helm Command:

helm upgrade --install k8s-risk-assessment-job
oci://public.ecr.aws/k9v9d5v2/k8s-risk-assessment-job \
--set accuknox.tenantID="[TENANTID]" \
--set accuknox.authToken="[AUTHTOKEN]" \
--set accuknox.cronTab="30 9 * * *" \
--set accuknox.clusterName="[CLUSTERNAME]" \
--set accuknox.URL="cspm.demo.accuknox.com" \
--set accuknox.label="[LABEL]" \
--version=v1.1.3

Features:

●​ Detection of misconfigurations and insecure configurations
●​ Includes checks for root containers, privilege escalation, and 100+ other

rules

Control Plane Access:

●​ HTTPS access to Artifact Endpoint

K8s Identity & Entitlements
Management

Deployment Mode: Kubernetes cronjob

Helm Command:

helm upgrade --install kiem-job oci://public.ecr.aws/k9v9d5v2/kiem-job \
--set accuknox.label="[LABEL]" \
--version v1.1.3 \
--set accuknox.URL="cspm.demo.accuknox.com" \
--set accuknox.authToken="[AUTHTOKEN]" \
--set accuknox.cronTab="30 9 * * *" \
--set accuknox.clusterName="[CLUSTERNAME]" \
--set accuknox.tenantID="[TENANTID]"

Features:

●​ Identifies overly permissive role bindings
●​ Graph-based identity view
●​ Detection of dangling service accounts and cross-namespace access

Control Plane Access:

●​ HTTPS access to Artifact Endpoint

K8s CIS Benchmarking

Deployment Mode: Kubernetes cronjob

Helm Command:

helm upgrade --install cis-k8s-job oci://public.ecr.aws/k9v9d5v2/cis-k8s-job \
--set accuknox.url="cspm.demo.accuknox.com" \
--set accuknox.tenantId="[TENANTID]" \
--set accuknox.authToken="[AUTHTOKEN]" \
--set accuknox.cronTab="30 9 * * *" \
--set accuknox.clusterName="[CLUSTERNAME]" \

--set accuknox.label="[LABEL]" \
--version v1.1.3

Features:

●​ Benchmarks support for:
●​ Kubernetes (generic)
●​ EKS
●​ AKS
●​ GKE
●​ OKE not currently supported

Control Plane Access:

●​ HTTPS access to Artifact Endpoint

DISA STIGs Support

Deployment Mode: Kubernetes cronjob

Helm Command:

helm upgrade --install k8s-stig-job oci://public.ecr.aws/k9v9d5v2/k8s-stig-job \
--set accuknox.url="cspm.demo.accuknox.com" \
--set accuknox.tenantId="[TENANTID]" \
--set accuknox.authToken="[AUTHTOKEN]" \
--set accuknox.cronTab="30 9 * * *" \
--set accuknox.clusterName="[CLUSTERNAME]" \
--set accuknox.label="[LABEL]" \
--version v1.1.3

Features:

●​ DISA Special Technical Implementation Guidelines (STIGs) compliance

Control Plane Access:

●​ HTTPS access to Artifact Endpoint

In-Cluster Container Image
Scanning

Deployment Mode: CronJob (per node job)

Helm Command:

helm install kubeshield kubeshield-chart \
--set scan.tenantId="<TENANTID>" \
--set scan.artifactToken="<TOKEN>" \
--set scan.artifactEndpoint="https://cspm.demo.accuknox.com/api/v1/artifact/" \
--set scan.label="<LABEL>"

Features:

●​ Direct in-cluster image scanning (no registry access required)
●​ Scans cached images on nodes
●​ Reports sent to AccuKnox console for triage

Control Plane Access:

●​ HTTPS access to Artifact Endpoint

Admission Controller Support

AccuKnox Admission Controller enforces:

1.​ Trusted registry enforcement for images
2.​ Deployment compliance with security best practices (no root, no host

mounts, etc.)
3.​ Violations reported to AccuKnox Control Plane (visible under Monitors &

Alerts)

Cluster Access to Control Plane

Each feature requires outbound (egress) HTTPS access only. Refer to the access notes
under each feature for exact service and port requirements.

Cluster Onboarding

This is a detailed guide on how to onboard clusters to the AccuKnox SaaS platform.
The guide covers the installation of KubeArmor and AccuKnox agents in the cluster
to connect to the AccuKnox SaaS application.

Below shown image is from an k3s cluster running in a local machine with Kali Linux
Operating System. We can onboard this cluster by following the steps shown below

Step 1: As a first time user, the management console will show up the CNAPP
dashboard without any data mentioned in widgets, since the cloud account and
cluster onboarding is not done.

Step 2: Navigate to Manage Cluster from Settings Tab: From this page we can
onboard the clusters running in various cloud platforms like GCP,AWS and Azure. We
can onboard locally setup clusters using an cloud option. To onboard cluster select
onboard now option

Step 3: In this screen, give any name to the cluster that you are going to onboard
now.

Step 4: Installing KubeArmor and AccuKnox agents

We are going to install KubeArmor and AccuKnox-agents to connect to the
AccuKnox SaaS application. For the agent installation selection click on the Runtime
Visibility & Protection.

Step 4.1 KubeArmor Installation

KubeArmor

KubeArmor is a cloud-native runtime security enforcement system that restricts the
behavior (such as process execution, file access, and networking operation) of
containers and nodes at the system level.

With KubeArmor, a user can:

●​ Restrict file system access for certain processes
●​ Restrict what processes can be spawned within the pod
●​ Restrict the capabilities that can be used by the processes within the pod

KubeArmor differs from seccomp-based profiles, wherein KubeArmor allows to
dynamically set the restrictions on the pod. With seccomp, the restrictions must be
placed during the pod startup and cannot be changed later. KubeArmor leverages
Linux Security Modules (LSMs) to enforce policies at runtime.

KubeArmor is installed using the following commands:

curl -sfL http://get.kubearmor.io/ | sudo sh -s -- -b /usr/local/bin && karmor install

Step 4.2: AccuKnox-Agents installation

After installing KubeArmor we are going to install AccuKnox Agents in the cluster.

AccuKnox Agents

1.​ KubeArmor: KubeArmor is a cloud-native runtime security enforcement
system that restricts the behavior (such as process execution, file access,
and networking operation) of containers and nodes at the system level.
KubeArmor dynamically set the restrictions on the pod. KubeArmor
leverages Linux Security Modules (LSMs) to enforce policies at runtime.

2.​ Feeder Service: It collects the feeds from kubeArmor and relays to the
app.

3.​ Shared Informer Agent: It collects information about the cluster like pods,
nodes, namespaces etc.,

4.​ Policy Discovery Engine: It discovers the policies using the workload and
cluster information that is relayed by a shared informer Agent.

AccuKnox Agents can be installed using the following command:

helm upgrade --install agents oci://registry-1.docker.io/accuknox/accuknox-agents
--version "v0.6.5"
--set joinToken="***********-***********-***********"
--set spireHost="spire.demo.accuknox.com"
--set ppsHost="pps.demo.accuknox.com"
--set knoxGateway="knox-gw.demo.accuknox.com:3000"
-n agents --create-namespace

Note

In the above command joinToken is specific to this example and it will vary based on
the cluster

Step 5: Onboarded Cluster

After installing all the AccuKnox agents the cluster is onboarded successfully into the
SaaS application. We can see the workload details of the onboarded cluster by
Navigating to Inventory→cloud Workloads option. There all the onboarded clusters
will be listed out and all the inactive ones would be grayed out. By Double clicking on
the active cluster user can get a more detailed view of the cluster.

Cluster Onboarding with Access Keys

Streamlining cluster onboarding is made easy with access keys, allowing users to
onboard multiple clusters using the same key. Additionally, users can set expiration
times for these keys and specify the number of clusters each key can onboard. This
process can be performed directly from the CLI if the access key is already created,
offering enhanced flexibility and convenience

Pre-requisite:

1.​ Kubernetes (managed/un-manager) cluster

2.​ AccuKnox CNAPP login access
3.​ One or more clusters to onboard
4.​ Access Key (See how to create)

Onboarding

In the case of the Access key onboarding method, the User can directly onboard the
VMs from the CLI, To Onboard a new cluster follow the below steps:

Step1: Install KubeArmor

curl -sfL http://get.kubearmor.io/ | sudo sh -s -- -b /usr/local/bin
karmor install

Output:

kubearmor/kubearmor-client info checking GitHub for latest tag
kubearmor/kubearmor-client info found version: 1.3.0 for v1.3.0/linux/amd64
kubearmor/kubearmor-client info installed /usr/local/bin/karmor
kubearmor/kubearmor-client info karmor is installed in /usr/local/bin
kubearmor/kubearmor-client info invoke /usr/local/bin/karmor or move karmor to your
desired PATH

$ karmor install
🛡 Installed helm release : kubearmor-operator
😄 KubeArmorConfig created
⌚️ This may take a couple of minutes
🥳 KubeArmor Snitch Deployed!
🥳 KubeArmor Daemonset Deployed!
🥳 Done Checking , ALL Services are running!
⌚️ Execution Time : 58.615464051s

🔧 Verifying KubeArmor functionality (this may take upto a minute)...

 🛡️ Your Cluster is Armored Up!

Step2: Install AccuKnox Agents

https://help.accuknox.com/how-to/create-access-keys/

AccuKnox-Agents:

The AccuKnox Agent is a K8s operator that installs the following agents:

●​ Feeder service: It collects KubeArmor feeds.
●​ Shared-informer-agent: This agent authenticates with your cluster and

collects information regarding entities like nodes, pods, and namespaces.
●​ Policy-enforcement-agent: This agent authenticates with your cluster and

enforces labels and policies.
●​ Discovery Engine: Discovery Engine discovers the security posture for your

workloads and auto-discovers the policy set required to put the workload
in least-permissive mode. The engine leverages the rich visibility provided
by KubeArmor to auto-discover systems and network security postures.

The agent-operator also manages the agents' resource limits. The operator is in
charge of spawning the agents based on the size of the cluster. If the cluster size
changes, i.e., new nodes are added or existing nodes are deleted, then the operator
scales up or down the resources accordingly.

AccuKnox Agents can be installed using the following command:

helm upgrade --install agents oci://registry-1.docker.io/accuknox/accuknox-agents \
 --version "v0.5.11" \
 --set spireHost="spire.demo.accuknox.com" \
 --set ppsHost="pps.demo.accuknox.com" \
 --set knoxGateway="knox-gw.demo.accuknox.com:3000" \
 --set tokenURL="cwpp.demo.accuknox.com" \
 --set clusterName="accuknoxcluster" \
 --set accessKey="<token>" \
 -n accuknox-agents --create-namespace

Note

In the commands above, substitute --set clusterName with the desired cluster
name, and replace the <token> with the Access Keys generated from UI. Adjust the
URLs if required

Note

Please check for the value of --version "v0.0.0" from the UI steps of cluster
onboarding to make sure you are using the latest image tags

Output

Release "agents" does not exist. Installing it now.
Pulled: registry-1.docker.io/accuknox/accuknox-agents:v0.5.11
Digest: sha256:6b7870020c0470741b7a89f47fd6f4e85882521721ce50407351d231508c6aaf
NAME: agents
LAST DEPLOYED: Thu Jan 2 19:05:38 2025
NAMESPACE: accuknox-agents
STATUS: deployed
REVISION: 1
TEST SUITE: None

To verify please use

kubectl get po -n accuknox-agents

After installing all the AccuKnox agents, the cluster is onboarded successfully into
the SaaS application. We can see the workload details of the onboarded cluster by
Navigating to Inventory-> Clusters

View the workloads

Note

You can repeat the same command with different "clusterName" to onboard
multiple cluster using access keys

Onboard Cluster for Misconfiguration
Scanning

This guide outlines the steps for onboarding a cluster to AccuKnox SaaS for scanning
cluster misconfigurations.

For onboarding a cluster and for scanning for misconfigurations you need to create a
token first. For creating follow these steps:

Go to Settings > Tokens and click on the create button. Give your token a name and
click on generate button.

Once the token is generated, copy it and take a note of it.

Now go to Settings > Manage Clusters, click on onboard now button or select an
existing cluster.

Give your cluster a name. Under the Agents Installation section select Cluster
Misconfiguration. Select a label and paste your token.

You can also change the schedule as per your requirement. Then next scan will
happen based on the schedule. Scroll down and copy the helm command and run it
inside a terminal. Then click on Finish button.

Once the scan is completed you can see the results on the findings page.

1.​ Go to the Issues > Findings page.
2.​ Select the Cluster Finding from the drop down.

Click on any of the findings to see more details.

CIS Benchmarking Compliance Scan
Onboarding

This guide details the steps to onboard a Kubernetes cluster to Accuknox SaaS for CIS
Benchmarking compliance scanning, enabling you to monitor and improve cluster
security in line with CIS standards.

Step 1: Generate an Access Token

To begin, create a token that will authenticate your cluster for scanning. Follow these
steps:

1.​ Navigate to Settings > Tokens in the Accuknox platform and Click on the
Create button, give your token a descriptive name (e.g.,

"CIS-Compliance-Token"), and click Generate.

2.​ Once the token is generated, copy it and securely save it for later use.

Step 2: Onboard Your Cluster

1.​ Go to Settings > Manage Clusters and Click Onboard Now or select an
existing cluster if you're updating a previously onboarded cluster.

2.​ Enter a name for your cluster to identify it in Accuknox. From the scan

type, choose CIS Benchmarking.
3.​ Select a label for easy identification and paste the token you generated in

Step 1. Set a scan schedule based on your requirements. Accuknox will
automatically run scans according to the selected schedule.

Step 3: Deploy the Scanner Using
Helm

1.​ Scroll down to the Helm Command section and copy the provided
command.

2.​ Run this command in your terminal on a machine that has access to your

Kubernetes cluster. The command will schedule the scan for CIS
Benchmarking compliance.

3.​ Once the Helm installation is complete, return to the Accuknox platform
and click Finish.

Step 4: View Compliance
Findings

After the initial scan is completed, you can view the compliance results:

1.​ Go to Issues > Findings in Accuknox.

2.​ Use the Findings dropdown to filter and select CIS k8s Benchmarking
finding results.

3.​ Each result will provide details on specific CIS controls and any

non-compliant configurations detected.

This completes the onboarding process for CIS Benchmarking compliance scanning.
You can review findings regularly to maintain and improve your cluster's CIS
compliance.

Cluster Offboarding

This guide outlines the steps for offboarding a cluster from AccuKnox SaaS. The
process involves uninstalling the agents from the cluster and deleting the cluster
from AccuKnox SaaS.

Below, you will find detailed instructions for agent uninstallation from your cluster
CLI and deleting the cluster from AccuKnox SaaS. These steps apply to all clusters.

Agents Uninstallation

Uninstall AccuKnox agents using the following commands:

helm uninstall agents -n agents && kubectl delete ns agents;

helm uninstall cis-k8s-job;

helm uninstall kiem-job;

helm uninstall k8s-risk-assessment-job

Sample for Uninstalling Runtime Visibility & Protection

agents

 (Accuknox㉿kali)-[~]

└─$ helm uninstall agents -n agents && kubectl delete ns agents

WARNING: Kubernetes configuration file is group-readable. This is insecure. Location:
/etc/rancher/k3s/k3s.yaml

WARNING: Kubernetes configuration file is world-readable. This is insecure. Location:
/etc/rancher/k3s/k3s.yaml

release "agents" uninstalled

namespace "agents" deleted

Cluster Deletion

Step 1: Login to AccuKnox SaaS and Go to Manage Cluster under Settings

Step 2: Select the cluster and click Delete to delete the cluster from SaaS.

This will delete the cluster from AccuKnox SaaS.

Runtime Security Deployment for
Openshift

Operator Installation

In the OpenShift console, install KubeArmor operator by following the instructions
below:

●​ Under operators (1) select Operator Hub (2).
●​ Search for the word "kubearmor" (3) and select "KubeArmor Operator" (4).
●​ Install KubeArmor version "1.4.9" with default configurations (5, 6, 7).

ElasticSearch Integration

To integrate KubeArmor with Elasticsearch, the following inputs are required:

●​ Username/Password: If the Elasticsearch server requires authentication.
●​ CA Certificate: If Elasticsearch security is enabled.
●​ URL of Elasticsearch: Including protocol and port.

Steps to Install

Username/Password Installation

If the server does not require authentication, you can skip this step. To use
username/password authentication with Elasticsearch, a Kubernetes secret called
elastic-secret needs to be created in the kubearmor namespace.

Run the following command, replacing <elastic-user> and <elastic-password> with
appropriate values:

kubectl create secret generic elastic-secret -n kubearmor --from-literal
username=<elastic-user> --from-literal password=<elastic-password>

CA Certificate Installation

To use HTTPS communication between the agents and Elasticsearch, a Kubernetes
secret called elastic-ca needs to be created in the kubearmor namespace.

●​ Acquire the CA certificate used by Elasticsearch. If acquiring the certificate
is not possible, set the allowInsecureTLS flag to true in the next steps.

●​ Save the certificate in a file and run the following command:

kubectl create secret generic elastic-ca -n kubearmor --from-file ca.crt=<cacert file name>

KubeArmor Instance Installation

Once the steps in the previous chapter are completed, proceed with the agent
installation from the OpenShift console.

Steps to Install

1.​ Install the required SCC using the following command:

oc create -f
https://raw.githubusercontent.com/kubearmor/KubeArmor/main/pkg/KubeArmorOperator/co
nfig/rbac/kubearmor-scc.yaml

1.​ In the OpenShift console:
2.​ Under Operators (1), go to Installed Operators (2).
3.​ Select kubearmor (3) as the project.
4.​ Click on the KubeArmor Operator (4).
5.​ Create a KubeArmorConfig Instance (5).
6.​ In the form view:
7.​ Select Adapters (6) -> Elasticsearch Adapter (7).
8.​ Perform the following steps:

●​ Enter the Elasticsearch URL in the field (8).
●​ Enable Elasticsearch adapter by checking the checkbox (9).
●​ Click on Elasticsearch Authentication (10) and:
●​ Set the CA secret field (11) to elastic-ca.
●​ To enable insecure TLS communication (if no certificate is

available), check the allowInsecureTLS checkbox (11-b) and leave
the field (11) empty.

9.​ Create the instance. The KubeArmorConfig Instance controls the installation
of the agents in the entire cluster, and only one instance should be
created per cluster.

Kibana Dashboard Setup

Steps to Install

Along with this document, a file called kubearmor-dashboard.ndjson has been shared.
Follow these steps to import the dashboard:

1.​ Under the Management tab, select Stack Management.
2.​ Navigate to Saved Objects under Kibana.
3.​ Click Import and select kubearmor-dashboard.ndjson.

Onboarding and Deboarding VMs with
Docker

Docker

Docker v19.0.3 and Docker Compose v1.27.0+ are required. Follow the latest Install
Docker Engine for downloading. Ensure you also add your user to the docker user
group: Linux post-installation steps for Docker Engine.

Linux Kernel v5.8+ with BPF LSM support is needed. See how to enable BPF LSM.

If the environment does not support Linux v5.8+ or BPF LSM and instead uses
AppArmor, host enforcement will still work out of the box. However, to protect
containers, new containers must be created with special options. Refer to the
"Support for Non-Orchestrated Containers" documentation for more details.

Resource Requirements

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://github.com/kubearmor/KubeArmor/blob/main/getting-started/FAQ.md#checking-and-enabling-support-for-bpf-lsm
https://github.com/kubearmor/KubeArmor/wiki/Support-for-non-orchestrated-containers

Node
Type

vCPU Memory Disk

Control
Plane
Node

2 4 GB 24 GB

Worker
Node

2 2 GB 12 GB

Network Requirements

Connectivity between control plane node and worker nodes is a must. They should
either be:

●​ Part of the same private network (recommended & secure)
●​ Control plane has a public IP (not recommended)

Ports required on the control plane VM:

Component Type Ports Endpoint Purpose

Knox-Gateway Outbound to SaaS 3000 knox-gw.<env>.a
ccuknox.com:30
00

For Knox-Gat
service

PPS Outbound to SaaS 443 pps.<env>.accuk
nox.com

For PPS (Polic
Provisioning S

Spire-Server Outbound to SaaS 8081,
9090

spire.<env>.accu
knox.com

For Spire-Serv
communicat

KubeArmor
Relay Server

Inbound in Control
Plane

32768 - For KubeArm
server on con

Shared
Informer
Agent

Inbound in Control
Plane

32769 - For Shared In
agent on con

Policy
Enforcement
Agent (PEA)

Inbound in Control
Plane

32770 - For Policy Enf
Agent on con

Hardening
Module

Inbound in Control
Plane

32771 - For Discovery
Hardening M

VM Worker
Nodes

Outbound from
worker node to
Control Plane

32768-32
771

- For VM worke
to connect to
control plane

By default, the network created by onboarding commands reserves the subnet
172.20.32.0/27. If you want to change it for your environment, you can use the
--network-cidr flag.

You can check the connectivity between nodes using curl. Upon a successful
connection, the message returned by curl will be:

$ curl <control-plane-addr>:32770
curl: (1) Received HTTP/0.9 when not allowed

Onboarding

Navigate to the onboarding page (Settings → Manage Cluster → Onboard Now) and
choose the "VM" option on the instructions page. Then, provide a name for your
cluster. You will be presented with instructions to download accuknox-cli and
onboard your cluster.

The following agents are installed:

1.​ Feeder-service which collects KubeArmor feeds.
2.​ Shared-informer-agent authenticates with your VMs and collects

information regarding entities like hosts, containers, and namespaces.
3.​ Policy-enforcement-agent authenticates with your VMs and enforces

labels and policies.

Install knoxctl/accuknox-cli

curl -sfL https://knoxctl.accuknox.com/install.sh | sudo sh -s -- -b /usr/bin

Onboarding Control Plane

The command may look something like this:

$ knoxctl onboard vm Control Plane-node \
 --version "v0.2.10" \
 --join-token="843ef458-cecc-4fb9-b5c7-9f1bf7c34567" \
 --spire-host="spire.dev.accuknox.com" \
 --pps-host="pps.dev.accuknox.com" \
 --knox-gateway="knox-gw.dev.accuknox.com:3000"

The above command will emit the command to onboard worker nodes. You may also
use the --Control Plane-node-addr flag to specify the address that other nodes will use
to connect with your cluster.

By default, the network created by onboarding commands reserves the subnet
172.20.32.0/27 for the accuknox-net Docker network. If you want to change it for your
environment, you can use the --network-cidr flag.

Onboarding Worker Nodes

The second command will be for onboarding worker nodes. It may look something
like this:

knoxctl onboard vm node --Control Plane-node-addr=<control-plane-addr>

Example:

$ knoxctl onboard vm node --Control Plane-node-addr=192.168.56.106
Pulling kubearmor-init ... done
Pulling kubearmor ... done
Pulling kubearmor-vm-adapter ... done
Creating network "accuknox-config_accuknox-net" with the default driver
Creating kubearmor-init ... done
Creating kubearmor ... done
Creating kubearmor-vm-adapter ... done
onboard-vm-node.go:41: VM successfully joined with control-plane!

Troubleshooting

If you encounter any issues while onboarding, use the commands below to debug:

docker logs spire-agent -f
docker logs shared-informer-agent -f
docker logs kubearmor-init -f
docker logs kubearmor -f

Deboarding

Deboard the cluster from SaaS first.

To deboard the worker-vm/Node:

knoxctl deboard vm node

To deboard the Control-Plane VM:

knoxctl deboard vm Control Plane-node

Sample Output:

$ knoxctl deboard vm Control Plane-node
[+] Running 10/10
 ✔ Container shared-informer-agent Removed 0.6s
 ✔ Container feeder-service Removed 0.6s
 ✔ Container policy-enforcement-agent Removed 0.8s
 ✔ Container wait-for-it Removed 0.0s
 ✔ Container kubearmor-vm-adapter Removed 5.6s
 ✔ Container kubearmor-relay-server Removed 1.5s
 ✔ Container spire-agent Removed 0.5s
 ✔ Container kubearmor Removed 10.4s
 ✔ Container kubearmor-init Removed 0.0s
 ✔ Network accuknox-config_accuknox-net Removed 0.3s
Please remove any remaining resources at /home/user/.accuknox-config
Control plane node deboarded successfully.

After that cleanup the ~/.accuknox-config directory

sudo rm -rf ~/.accuknox-config

Onboarding and Deboarding VMs with
Systemd

Systemd

Systemd is a core component of modern Linux systems responsible for managing
services and processes. It ensures that essential services start automatically during
boot, remain running, and restart if they fail. In simple terms, systemd acts like a
controller that organizes and oversees everything needed to keep the system stable
and functional.

Currently, root/sudo permissions are needed for onboarding systemd. This is
because KubeArmor requires privileges to protect the host and systemd services,
packages are currently installed on the root directory.

Only in case of the control plane node, a working RabbitMQ server is required. This
can be installed using Docker.

Latest RabbitMQ 3.13
docker run -it --rm --name rabbitmq -p 5672:5672 -p 15672:15672 rabbitmq:3.13-management

Alternatively, you can install RabbitMQ using a package manager:

●​ Linux, BSD, UNIX: Debian, Ubuntu | RHEL, CentOS Stream, Fedora |
Generic binary build | Solaris

●​ Windows: Chocolatey package | Windows Installer | Binary build
●​ MacOS: Homebrew | Generic binary build
●​ Erlang/OTP for RabbitMQ

BTF support is needed. Any kernel version which has this should work. Check if BTF
info is present with the script below:

if [! -e "/sys/kernel/btf/vmlinux"]; then
 echo "BTF info not present"
else
 echo "BTF info present"
fi

If the script returns "BTF info not present," BTF support is not available, and you
should run the script below to build the required files on your system:

Download KubeArmor
git clone https://github.com/kubearmor/KubeArmor/
cd KubeArmor/KubeArmor/packaging
. /post-install.sh

Note

https://www.rabbitmq.com/docs/install-debian
https://www.rabbitmq.com/docs/install-rpm
https://www.rabbitmq.com/docs/install-generic-unix
https://www.rabbitmq.com/docs/install-solaris
https://community.chocolatey.org/packages/rabbitmq
https://www.rabbitmq.com/docs/install-windows
https://www.rabbitmq.com/docs/install-windows-manual
https://www.rabbitmq.com/docs/install-homebrew
https://www.rabbitmq.com/docs/install-generic-unix
https://www.rabbitmq.com/docs/which-erlang
https://help.accuknox.com/how-to/systemd-nonbtf/

For detailed instructions specific to SystemD Based Non-BTF Environments, please
refer to this guide.

Container Protection Requirements (Optional)

If container protection is needed, a Linux Kernel with BPF LSM is desired. Generally, it
is present in v5.8+. Here's a guide on enabling BPF LSM: KubeArmor Getting Started
FAQ.

If BPF LSM is not available, AppArmor should still work out of the box for host policy
application. However, follow the guide Support for non orchestrated containers for
each container.

Resource Requirements

Control Plane Node (Minimum)

Resourc
e

Require
ment

CPU 2 vCPU

Memory 4 GB

Disk 1 GB

Worker Node (Minimum)

https://help.accuknox.com/how-to/systemd-nonbtf/
https://github.com/kubearmor/KubeArmor/blob/main/getting-started/FAQ.md#checking-and-enabling-support-for-bpf-lsm
https://github.com/kubearmor/KubeArmor/blob/main/getting-started/FAQ.md#checking-and-enabling-support-for-bpf-lsm
https://github.com/kubearmor/KubeArmor/wiki/Support-for-non-orchestrated-containers

Resourc
e

Require
ment

CPU 2 vCPU

Memory 2 GB

Disk 500 MB

Network Requirements

Connectivity between control plane node and worker nodes is a must. They should
either be:

●​ Part of the same private network (recommended & secure)
●​ Control plane has a public IP (not recommended)

Ports required on the control plane VM:

Component Type Ports Endpoint Purpose

Knox-Gateway Outbound to SaaS 3000 knox-gw.<env>.a
ccuknox.com:30
00

For Knox-Gat
service

PPS Outbound to SaaS 443 pps.<env>.accuk
nox.com

For PPS (Polic
Provisioning S

Spire-Server Outbound to SaaS 8081,
9090

spire.<env>.accu
knox.com

For Spire-Serv
communicat

KubeArmor
Relay Server

Inbound in Control
Plane

32768 - For KubeArm
server on con

Shared
Informer
Agent

Inbound in Control
Plane

32769 - For Shared In
agent on con

Policy
Enforcement
Agent (PEA)

Inbound in Control
Plane

32770 - For Policy Enf
Agent on con

Hardening
Module

Inbound in Control
Plane

32771 - For Discovery
Hardening M

VM Worker
Nodes

Outbound from
worker node to
Control Plane

32768-32
771

- For VM worke
to connect to
control plane

Check the CWPP documentation for more details on the network requirements.

https://help.accuknox.com/getting-started/cwpp-prereq/#minimum-resource-required

You can check the connectivity between nodes using curl. Upon a successful
connection, the message returned by curl will be:

$ curl <control-plane-addr>:32770
curl: (1) Received HTTP/0.9 when not allowed

Onboarding

Navigate to the onboarding page (Settings → Manage Cluster → Onboard Now) and
choose the "VM" option on the instructions page. Then, provide a name for your
cluster. You will be presented with instructions to download accuknox-cli and
onboard your cluster.

The following agents will be installed:

1.​ Feeder-service which collects KubeArmor feeds.
2.​ Shared-informer-agent authenticates with your VMs and collects

information regarding entities like hosts, containers, and namespaces.
3.​ Policy-enforcement-agent authenticates with your VMs and enforces

labels and policies.

Install knoxctl/accuknox-cli

curl -sfL https://knoxctl.accuknox.com/install.sh | sudo sh -s -- -b /usr/bin

Onboarding Control Plane

The command may look something like this:

$ knoxctl onboard vm cp-node \
 --version "v0.2.10" \
 --join-token="843ef458-cecc-4fb9-b5c7-9f1bf7c34567" \
 --spire-host="spire.dev.accuknox.com" \
 --pps-host="pps.dev.accuknox.com" \
 --knox-gateway="knox-gw.dev.accuknox.com:3000"

Note

By default, if Docker is not found, systemd mode of installation would be used. If you
want to explicitly onboard using systemd services, add the --vm-mode=systemd flag to
the above command.

The above command will emit the command to onboard worker nodes. You may also
use the --cp-node-addr flag to specify the address that other nodes will use to connect
with your cluster.

Onboarding Worker Nodes

The second command will be for onboarding worker nodes. It may look something
like this:

knoxctl onboard vm node --cp-node-addr=<control-plane-addr>

Example:

$ knoxctl onboard vm node --cp-node-addr=192.168.56.106
Pulling kubearmor-init ... done
Pulling kubearmor ... done
Pulling kubearmor-vm-adapter ... done
Creating network "accuknox-config_accuknox-net" with the default driver
Creating kubearmor-init ... done
Creating kubearmor ... done
Creating kubearmor-vm-adapter ... done
onboard-vm-node.go:41: VM successfully joined with control-plane!

Troubleshooting

If you encounter any issues while onboarding, use the commands below to debug:

sudo journalctl -xeu <service-name>.service

Replace <service-name> with one of the following:

●​ kubearmor: Logs show policy enforcement and monitor Kubernetes
workloads; useful for debugging misconfigurations or runtime issues.

●​ kubearmor-relay-server: Bridges KubeArmor clients with external log
systems; logs debug communication or relay errors.

●​ kubearmor-vm-adapter: Tracks policy enforcement in VMs; logs diagnose
policy application on non-Kubernetes workloads.

●​ accuknox-policy-enforcement-agent: Enforces security policies; logs
troubleshoot policy errors or conflicts.

●​ accuknox-shared-informer-agent: Shares Kubernetes resource data; logs
debug metadata collection issues.

●​ accuknox-sumengine: Processes telemetry data; logs resolve performance
or data processing errors.

●​ accuknox-discover-agent: Discovers potential policies; logs analyze policy
suggestions.

●​ spire-agent: Manages workload identities; logs debug identity issuance and
attestation issues.

●​ accuknox-hardening-agent: Automates system hardening; logs troubleshoot
configuration and hardening conflicts.

Deboarding

Deboard the cluster from SaaS first.

To deboard the worker-vm/Node:

knoxctl deboard vm node

To deboard the Control-Plane VM:

knoxctl deboard vm cp-node

Sample Output:

$ knoxctl deboard vm cp-node
[+] Running 10/10
 ✔ Container shared-informer-agent Removed 0.6s
 ✔ Container feeder-service Removed 0.6s
 ✔ Container policy-enforcement-agent Removed 0.8s
 ✔ Container wait-for-it Removed 0.0s
 ✔ Container kubearmor-vm-adapter Removed 5.6s
 ✔ Container kubearmor-relay-server Removed 1.5s
 ✔ Container spire-agent Removed 0.5s
 ✔ Container kubearmor Removed 10.4s
 ✔ Container kubearmor-init Removed 0.0s
 ✔ Network accuknox-config_accuknox-net Removed 0.3s
Please remove any remaining resources at /home/user/.accuknox-config
Control plane node deboarded successfully.

After that cleanup the ~/.accuknox-config directory

sudo rm -rf ~/.accuknox-config

SystemD Based Non-BTF
Environments

Compiling system monitor

Some Kernels don't have BTF information available which is required by KubeArmor's
system monitor to work out of the box. Thus, the monitor has to be built either on the
target machine or on a machine which matches the kernel version of the target
machine.

There are two ways to do it, you can chose either one:

Compile system monitor using Docker (Recommended

and reliable)

1.​ Dependencies:
●​ Make sure you have docker installed
●​ Make sure you have linux-headers installed for your package

2.​ Run the kubearmor-init container using the below command which will
generate the file /tmp/system_monitor.bpf.o.

sudo docker run --rm -d --name=kubearmor-init --privileged \
-v "/tmp:/opt/kubearmor/BPF:rw" \
-v "/lib/modules:/lib/modules:ro" \
-v "/sys/kernel/security:/sys/kernel/security:ro" \
-v "/sys/kernel/debug:/sys/kernel/debug:ro" \
-v "/media/root/etc/os-release:/media/root/etc/os-release:ro" \
-v "/usr/src:/usr/src" \
kubearmor/kubearmor-init:stable

Compile system monitor directly (Might not work for

some versions)

Get the KubeArmor version from Release v1.4.3 - kubearmor/KubeArmor

Fetch and install KubeArmor by running

VER="1.4.3" # set according to the latest version

https://github.com/kubearmor/KubeArmor/releases/latest

curl -sfLO
<https://github.com/kubearmor/KubeArmor/releases/download/v${VER}/kubearmor_${VER}_li
nux-amd64.deb>
sudo apt install . /kubearmor_${VER}_linux-amd64.deb

The above will generate the system monitor file at
/opt/kubearmor/BPF/system_monitor.bpf.o. Copy it to some other path.

Onboard the node

Once you've compiled the monitor, you can specify it while onboarding the control
plane/node.

Install knoxctl - the accuknox CLI by running the below command

curl -sfL <https://knoxctl.accuknox.com/install.sh> | sudo sh -s -- -b /usr/local/bin

Onboard your node/control plane by running the respective command with the
below additional flags

sudo knoxctl onboard vm cp-node \
... usual flags
--skip-btf-check=true \

--system-monitor-path=/tmp/system_monitor.bpf.o

VM Onboarding using Access Keys

Overview

The access key method simplifies the onboarding of multiple VMs as control plane
VMs. The process mirrors that of SystemD mode and Docker Container mode. Using

the access key, users can onboard a VM directly from the CLI without needing to
access the AccuKnox SaaS interface.

Users can select either SystemD or Docker Container mode for onboarding, as the
same access key works for both. Moreover, the access key provides enhanced
flexibility, enabling the onboarding of multiple control plane VMs with a single key

Here we will follow the SystemD mode of onboarding

Pre-requisites

1.​ Access Key
2.​ Resource requirements
3.​ Network requirements
4.​ BTF support is enabled in the VM
5.​ RabbitMQ should be installed

Onboarding

In the case of the Access key onboarding method User can directly onboard the VMs
from the CLI

NOTE

We don't need to follow AccuKnox UI for the access key method of the VM
onboarding; we will be using a command to do the same from the CLI.

Install knoxctl/accuknox-cli

curl -sfL https://knoxctl.accuknox.com/install.sh | sudo sh -s -- -b /usr/bin

Onboarding Control Plane

https://help.accuknox.com/how-to/create-access-keys/
https://help.accuknox.com/how-to/vm-onboard-deboard-systemd/#resource-requirements
https://help.accuknox.com/how-to/vm-onboard-deboard-systemd/#network-requirements
https://www.rabbitmq.com/docs/download

The command may look something like this:

knoxctl onboard vm cp-node \
 --version v0.8.1 \
 --spire-host=spire.demo.accuknox.com \
 --pps-host=pps.demo.accuknox.com \
 --knox-gateway=knox-gw.demo.accuknox.com:3000 \
 --vm-name="accuknox-vm" \
 --access-key-url="cwpp.demo.accuknox.com" \
 --access-key="access-token"

In the above command, You need to replace the --access-token value with the created
access key, and substitute --vm-name with the desired vm name. After replacing the
value the command will look like this:

By default, if Docker is not found, systemd mode of installation would be used. If you
want to explicitly onboard using systemd services, add the --vm-mode=systemd flag to
the above command.

Output

https://help.accuknox.com/how-to/create-access-keys/

The above command will emit the command to onboard worker nodes. You may also
use the --cp-node-addr flag to specify the address that other nodes will use to connect
with your cluster.

NOTE

The user needs to repeat the CLI onboarding command to onboard multiple control
plane VMs using the access key

Onboarding Worker Nodes

The second command will be for onboarding worker nodes. It may look something
like this:

knoxctl onboard vm node --vm-mode="systemd" --version=v0.8.1
--cp-node-addr=<control-plane-addr>

Example:

$ knoxctl onboard vm node --vm-mode="systemd" --version=v0.8.1
--cp-node-addr=192.168.56.106
Pulling kubearmor-init ... done
Pulling kubearmor ... done
Pulling kubearmor-vm-adapter ... done
Creating network "accuknox-config_accuknox-net" with the default driver
Creating kubearmor-init ... done
Creating kubearmor ... done
Creating kubearmor-vm-adapter ... done
onboard-vm-node.go:41: VM successfully joined with control-plane!

Troubleshooting

If you encounter any issues while onboarding, use the commands below to debug:

sudo journalctl -xeu <service-name>.service

Replace <service-name> with one of the following:

●​ kubearmor: Logs show policy enforcement and monitor Kubernetes
workloads; useful for debugging misconfigurations or runtime issues.

●​ kubearmor-relay-server: Bridges KubeArmor clients with external log
systems; logs debug communication or relay errors.

●​ kubearmor-vm-adapter: Tracks policy enforcement in VMs; logs diagnose
policy application on non-Kubernetes workloads.

●​ accuknox-policy-enforcement-agent: Enforces security policies; logs
troubleshoot policy errors or conflicts.

●​ accuknox-shared-informer-agent: Shares Kubernetes resource data; logs
debug metadata collection issues.

●​ accuknox-sumengine: Processes telemetry data; logs resolve performance
or data processing errors.

●​ accuknox-discover-agent: Discovers potential policies; logs analyze policy
suggestions.

●​ spire-agent: Manages workload identities; logs debug identity issuance and
attestation issues.

●​ accuknox-hardening-agent: Automates system hardening; logs troubleshoot
configuration and hardening conflicts.

Deboarding

Deboard the cluster from SaaS first.

To deboard the worker-vm/Node:

knoxctl deboard vm node

To deboard the Control-Plane VM:

knoxctl deboard vm cp-node

Sample Output:

$ knoxctl deboard vm cp-node
[+] Running 10/10
 ✔ Container shared-informer-agent Removed 0.6s
 ✔ Container feeder-service Removed 0.6s
 ✔ Container policy-enforcement-agent Removed 0.8s
 ✔ Container wait-for-it Removed 0.0s
 ✔ Container kubearmor-vm-adapter Removed 5.6s
 ✔ Container kubearmor-relay-server Removed 1.5s
 ✔ Container spire-agent Removed 0.5s

 ✔ Container kubearmor Removed 10.4s
 ✔ Container kubearmor-init Removed 0.0s
 ✔ Network accuknox-config_accuknox-net Removed 0.3s
Please remove any remaining resources at /home/user/.accuknox-config
Control plane node deboarded successfully.

After that cleanup the ~/.accuknox-config directory

sudo rm -rf ~/.accuknox-config

In-Cluster Image Scanning with Helm

AccuKnox offers an in-cluster container image scanning solution designed to
periodically inspect container images deployed within your Kubernetes (K8s)
environment. This automated scanning process detects known vulnerabilities,
promoting compliance and enhancing your cluster’s overall security. All scan results,
including detailed vulnerability insights, are automatically sent to the AccuKnox
Control Plane, where they can be viewed and managed through an intuitive user
interface.

🛠 Installation Guide

Follow these steps to deploy the in-cluster image scanner using Helm:

1. Create a Label

In the AccuKnox Control Plane, create a unique Label. This will be associated with
the container image scan reports.

2. Generate a Token

From the AccuKnox Control Plane:

●​ Generate an Artifact Token

https://app.accuknox.com/settings/labels
https://app.accuknox.com/settings/tokens

●​ Note down both the Token and your Tenant ID

3. Schedule and Deploy the Scanner via Helm

Use the following Helm command to install the scanner in your Kubernetes cluster:

helm install kubeshield oci://public.ecr.aws/k9v9d5v2/kubeshield-chart -n agents
--create-namespace \
 --set scan.tenantId="" \
 --set scan.authToken="" \
 --set scan.url="" \
 --set scan.label="" \
 --set scan.cronTab="30 9 * * *" \
 --version "v0.1.2"

Replace the parameters (,, , and ``) with the appropriate values.

Sample Output

Pulled: public.ecr.aws/k9v9d5v2/kubeshield-chart:v0.1.1
Digest: sha256:a4c1a8948db7a24d8990b71b53184f564960b2b39dbd6cba1cd6104c12addd75
NAME: kubeshield
LAST DEPLOYED: Mon May 5 10:08:24 2025
NAMESPACE: agents
STATUS: deployed
REVISION: 1
TEST SUITE: None

⚙️ Parameters:

Variable Sample
Value

Description

tenantId 11 AccuKnox
Tenant ID

authTok
en

eyJhbGc... AccuKnox Token

url cspm.acc
uknox.co
m

AccuKnox CSPM
API Endpoint

label kubeshiel
d

AccuKnox Label

cronTab 30 9 * * * Schedule in Cron

Note: Deploy the Scanner via Helm (One Time) If you don't want to schedule and just
want to trigger scan for one time, remove this flag --set scan.cronTab

✅ Post-Installation

Once the scanner is deployed and completes a scan cycle, results will be visible in the
Findings or Registry Scan sections within the AccuKnox Control Plane.

●​ Navigate to Issues -> Findings
●​ Switch to Findings tab
●​ Select Container Image Findings & do Group by based on Label Name
●​ You should be able to see the data for the Label used in above command

https://app.accuknox.com/issues/findings/findings-summary
https://app.accuknox.com/issues/registry-scan
https://app.accuknox.com/issues/findings/findings-summary

🧪 Scan Status from Cluster

🔧 Check if kubeshield-controller-manager is running fine or not

kubectl get po -n kubeshield
NAME READY STATUS RESTARTS AGE
kubeshield-controller-manager-5dd5cbc6d4-8xg8k 1/1 Running 0 22s

STATUS should be Running

Dockerhub Registry Onboarding

Docker Hub is a cloud-based repository for storing, sharing, and managing
Docker container images. It's like a library for container images, where you can
find and download pre-built images or upload your own.

Prerequisites

Personal Account

●​ Requires:
●​ Username
●​ Password

●​ Explanation: A personal account is used by individual users who own
or manage their own Docker Hub repositories. These credentials
authenticate access to the user's personal space in Docker Hub.

Organization Account

●​ Requires:
●​ Organization Name
●​ Username
●​ Password

●​ Explanation: An organization account is suitable for teams and
enterprises managing shared Docker Hub repositories. It allows
multiple users to collaborate under a unified organization while
maintaining individual user roles and permissions.

Note: Users must have pull permissions to access images stored in the enterprise
repositories.

Steps to Add a Registry

1. Navigate to the Registry Scan Section

●​ Go to Issues > Registry Scan.

2. Add a New Registry

●​ Click on Add Registry.

3. Provide Registry Details

●​ Registry Name: Enter a name for your registry.
●​ Label: Add a label to associate findings to a particular label.
●​ Description: Provide additional information about the registry.
●​ Registry Type: Select Docker Hub from the dropdown menu.

4. Authentication Type

●​ Choose an appropriate authentication type based on your Docker Hub
configuration:

●​ Personal: Requires your Docker Hub Username and Password.

●​ Organization: Requires your Organization Name, Username, and
Password.

5. Configure Advanced Settings

Image Updated Within Last

Choose one of the following options:

●​ X Days: Scans only images updated within the last X days.
●​ All: Scans all images, regardless of the update time.

Image Pulled Within Last

Choose one of the following options:

●​ X Days: Scans only images pulled within the last X days.
●​ All: Scans all images, regardless of the pull time.

Name/Tag Pattern:

Specify patterns to include or exclude images for scanning. Use the - symbol to
explicitly exclude patterns.

By default, images are excluded unless explicitly included through patterns.

To exclude specific images, use the - symbol. For example: - To exclude
cwpp/ubuntu:v1, use the pattern -*:v1. - To include cwpp/ubuntu:latest, specify a
pattern like *:latest.

Note: Only images matching the pattern will be scanned. For instance, using
*:latest ensures only images with the latest tags are scanned.

Schedule and Certificate

Set the scan schedule using a CRON expression. For example: - CRON Expression:
18 minute 07 hour * day (month) * month * day (week).

Toggle Trigger Scan on Save to directly initiate the scan for the first time without
waiting for the scheduled time.

Viewing Registry Scan Details

Once the configuration is complete, your registry is ready for scanning. Scans
will occur based on the defined schedule and criteria. Ensure all advanced
settings align with your organizational requirements for optimal results.

To view the scan results:

1.​ Navigate to Issues > Registry Scan.
2.​ Find your repository to view the findings.

3.​ Alternatively, select Scan Queue to check the scan status.

JFrog Container Registry Onboarding

JFrog Container Registry is a secure, universal repository manager specifically
optimized for storing and managing container images. Widely adopted by DevOps
and software teams, it supports Docker and Helm images, offering seamless
integration with CI/CD pipelines to enhance workflows and ensure image security
and traceability.

JFrog Artifactory offers two primary deployment options:

1.​ Cloud-Based: Managed by JFrog, offering scalability and minimal
maintenance for teams preferring a ready-to-use solution.

2.​ Self-Hosted: On-premise for strict security needs, giving organizations
control over configurations, with support for deployment in isolated
networks.

AccuKnox Support for JFrog
Container Registry Scanning

AccuKnox provides robust security scanning for container images stored in the JFrog
Container Registry, regardless of deployment type. Supporting both cloud-based and
self-hosted JFrog instances.

●​ Cloud-Based JFrog Scanning: For the JFrog Container Registry deployed
in the cloud, AccuKnox connects seamlessly to scan images and detect
vulnerabilities in real time.

●​ Self-Hosted JFrog Scanning: AccuKnox also supports self-hosted JFrog
Container Registry deployments, providing vulnerability scanning for
images in private, on-premise environments.

●​ Isolated Network Support: AccuKnox can connect to
self-hosted JFrog instances in isolated or air-gapped networks.
This enables secure scanning in environments with strict
compliance or network restrictions, ensuring continuous
monitoring without compromising security.

The following steps outline how to onboard your JFrog Container Registry into the
AccuKnox platform for ongoing security scanning, giving you real-time insights into
vulnerabilities and risks within your container images.

Scanning an Isolated Registry

Important: If you're using a non-isolated JFrog Container Registry (cloud-based or
non-isolated self-hosted), you can skip this section. This part applies only to isolated
JFrog instances.

To get started with scanning a JFrog isolated container registry, ensure the following
prerequisites are met:

1.​ Set up an isolated JFrog container registry.
2.​ Ensure you have access to a Kubernetes cluster where the AccuKnox

agents can be onboarded.

Once your registry is set up, the next step is to onboard the AccuKnox agents to your
Kubernetes cluster.

1.​ Navigate to Settings > Manage Cluster in the AccuKnox platform.
2.​ Click Onboard Now to begin the process.

3.​ Provide an appropriate name for your cluster in the form that appears.

During the agent installation process, ensure that the Scanner for

Isolated Registry Scan option is enabled.

4.​ Run the following Helm command to install the AccuKnox agents

helm upgrade --install agents oci://registry-1.docker.io/accuknox/accuknox-agents \

 --version "v0.8.0" \

 --set joinToken="<TOKEN>" \

 --set spireHost="spire.demo.accuknox.com" \

 --set ppsHost="pps.demo.accuknox.com" \

 --set knoxGateway="knox-gw.demo.accuknox.com:3000" \

 --set install.localRegistryAgent=true \

 -n agents --create-namespace

1.​ Verify the installation of the agents by running the following command:

kubectl get pods -n agents

Once the agents are installed, navigate to the Cluster View in AccuKnox to ensure
that your onboarded cluster is live and ready for scanning. This completes the
onboarding process for scanning an isolated container registry in AccuKnox. The next
step is to configure the registry scanning, as outlined in the previous sections.

Configuring the JFrog Registry

For this example, we'll proceed with JFrog Self-hosted.

Next, configure the self-hosted registry to begin scanning. Choose between JFrog
Cloud or Self-hosted.

1.​ Go to Settings -> Integration -> Registry.
2.​ Click on the Add Registry button
3.​ Fill out the required fields such as:

a.​ Name
b.​ Description
c.​ Registry Type
d.​ URL
e.​ Credentials
f.​ Cron Expression (for scheduled scans)

4.​ If your JFrog Container Registry is in an isolated mode, ensure that the
Isolated Registry flag is enabled in the onboarding form

5.​ Test the connection. If the configuration is correct, you will receive a
successful response.

6.​ Once the connection is verified, save the form and create the registry. After

the registry is configured and connected, it will appear as Active in the
registry list.

AccuKnox will begin scanning at the scheduled time specified during the
configuration or If you've enabled the Trigger scan on the save option, the first scan
will start immediately. Once the scan completes, navigate to the registry page to
view the results.

Viewing Scan Details

After the scan is completed, you can explore detailed information about the registry:

1.​ Go to Issues -> Findings -> Registry Scan.
2.​ Filter the results to view the onboarded registry.
3.​ Click on an image to see a detailed view of the metadata, vulnerabilities,

and other scan details.

In the JFrog Self-hosted Registry that we onboarded to AccuKnox during this
presentation, there is a specific package, accuknox/nginx. Below, you can see the
associated vulnerabilities for this image, as highlighted in the following screenshots.

To get more detailed information about the vulnerabilities associated with the
image, simply click on the container image in the AccuKnox dashboard. This will
allow you to view the metadata, including any embedded secrets and a
comprehensive list of the vulnerabilities identified in the image. You will also be able
to explore the severity of these vulnerabilities, CVSS scores, and recommended
remediation actions.

Integrating JFrog Container Registry with AccuKnox ensures continuous security
scanning for container images, whether cloud-based or self-hosted. For isolated
networks, AccuKnox provides secure, compliance-friendly scanning, helping you
detect and address vulnerabilities efficiently.

CWPP Report Generation

Understand the Regex to Select the Cluster Name and Namespace

The CWPP report generation utilizes regular expressions (regex) to specify and filter
cluster names and namespaces. The syntax for regex follows a particular pattern to
ensure accurate selection.

Regex

Regex Syntax Format: Cluster Name Selection / Namespace Selection

Rules for Regular Expression

Excluding

●​ To exclude a specific cluster or namespace, prefix it with a hyphen (-).

NOTE

To exclude any cluster or namespace, it must be included in the selection first.

Select all

●​ Use an asterisk (*) to select all clusters or namespaces.

Delimiter

●​ A forward slash (/) is used to delimit the cluster name selection from the
namespace selection.

Examples

●​ cluster1/ns1: Include only namespace ns1 from cluster cluster1.
●​ cluster1/*: Include all namespaces from cluster cluster1.
●​ cluster1/ns*: Include namespaces starting with ns from cluster cluster1.
●​ -cluster1/ns3: Exclude namespace ns3 from cluster cluster1.
●​ */ns1: Include namespace ns1 from all clusters.
●​ */*: Include all namespaces from all clusters.

Reports Configuration

Reports can be configured in two ways: On Demand and Scheduled.

1. On Demand Report Configuration

In On Demand Report, you can generate the report for the clusters shortly after the
configuration is completed.

To generate On Demand reports:

Step 1: Add CWPP Report Configuration

●​ Go to the Reports section in AccuKnox SaaS.
●​ Choose "On Demand" from the drop-down menu.

Step 2: In the Configuration user needs to provide the details about Name,
Description and Cluster and NameSpace.

NOTE

The cluster field drop-down will show all the clusters that are active during the report
generation.

By clicking Save and Generate Report it will generate the report in the PDF format as
per the selected duration.

2. Scheduled Report Configuration

To get the report of the clusters automatically as per the frequency that choosen .i.e
by weekly or by monthly or daily this is the go to way.

Step 1: To Add CWPP report configuration as Scheduled and choose the Scheduled
option from the drop down.

Step 2: In the Configuration user needs to provide the details about their Name,
Email, Selecting the Cluster, Namespace in the regex format and Frequency of the
report then click the Generate Report.

Step 3: After finishing the configuration the report would be scheduled to be sent to
you in the email. Users can reconfigure the past configurations by clicking on them
to edit the configuration.

NOTE

The report will be sent to the Email-ID daily at 09.00AM UTC.

How to Configure Custom Reports

AccuKnox's latest feature update provides new custom reporting feature capabilities
that can help users get the reports customized as per their requirements.

NOTE

For this feature to be enabled the customers need to inform the Support
team(support@accuknox.com) regarding their requirements for custom reporting.
Then the AccuKnox Support team can configure the report template from the
backend. After which the users can generate an on-demand report or configure a
scheduled report.

To generate an on-demand or scheduled report, users must follow the steps below.

On-demand custom Report
generation

Step 1: Users will need to navigate to the Reports->Custom Reports Section.

Step 2: Now the users will need to select any one report which they want to
configure from the customized reports that are shown in the UI.

Step 3: Users can configure the report as a scheduled report or generate it as an
on-demand one. Users can select any one option and fill out the necessary details.
Like if it is an on-demand report the users will need to fill in the following fields

Like the report name, an email address where the report needs to be sent, and the
duration for which the report needs to be generated from the drop-down list options
shown in the UI. After filling out these options the save button will be enabled and
users can save it.

Step 4: Once the on-demand report is saved the users can see the report in the UI
with the progress state mentioned

Step 5: After the report generation is completed you can see the Generate option in
the UI as well as the report will be mailed to the email address. If the user wants to
see the report in the UI they can click on the Generate report.

Scheduling Custom Report

Step 1: Users will need to navigate to the Reports->Custom Reports Section.

Step 2: Now the users will need to select any one report which they want to
configure from the customized reports that are shown in the UI.

Step 3: Now the users will have the option to configure the report as a scheduled
report or generate it as an on-demand one. Users can select any one option and fill
out the necessary details. If the users want to schedule a custom report then they
will have to fill out the following details like name, duration, and scheduling
frequency. AccuKnox provides 3 scheduling frequency options.

1.​ Daily Report: users can select the frequency as daily to receive the report
every day at the configured time.

2.​ Weekly: Users can also schedule the report weekly and select the day on a
week when the report needs to be generated.

3.​ Monthly: Users can also configure the report duration as monthly where

they will be getting the report on the 1st of every month. It will soon be

configurable as the user-defined date as well.

Step 4: Once the report generation is completed you can see the View option in the
UI as well as the report will be mailed to the email address. If the user wants to see
the report in the UI they can click on the View.

RINC

RINC (short for "Reporting IN Cluster") is a simple and lightweight reporting tool that
provides insights into the status of a Kubernetes cluster, as well as other services
running within it.

It includes built-in alerting capabilities, allowing users to define alerts using an
expression language. RINC comes with a set of practical and sensible pre-configured
alerts, which are included in the provided Helm charts. If you need to customize or
extend these alerts, you can easily do so using our expression language, which is
powered by the gval Go library.

RINC also supports email integration, allowing you to receive alerts via email.

Supported reports

●​ Kubernetes deployment and statefulset status reports
●​ Long-running job reports
●​ Registry scan job status reports
●​ Supports reporting jobs where the module container has succeeded but

the artifact-api container has failed.
●​ Kubernetes deployment and statefulset image tag reports

https://github.com/PaesslerAG/gval

●​ RabbitMQ metrics reports
●​ CEPH metrics reports
●​ Pod status reports
●​ PV Utilization report
●​ Pod & Node resource utilization report
●​ Token expiry report
●​ Nodes' time-in-sync report
●​ Connectivity & Status checks for,
●​ Vault
●​ MongoDB
●​ Redis/KeyDB
●​ Neo4j
●​ Postgresql
●​ Prometheus
●​ Metabase
●​ AWS RDS
●​ Weaviate
●​ Onboarded registries status report
●​ Kueue workload status report
●​ Supports reporting jobs where the module container has succeeded but

the artifact-api container has failed.

Installation

We recommend installing RINC through our provided helm charts.

Note: RINC uses MongoDB as its data store and creates a new collection called
"rinc" upon launch. It is recommended that you create a separate MongoDB user
with R/W access to the "rinc" collection. See the section on Minimum Required
Database Permissions.

VERSION=0.9.0

helm show values oci://public.ecr.aws/k9v9d5v2/accuknox-rinc --version "$VERSION" >
values.yaml

The file values.yaml is well-documented and includes all configurable options for RINC.
Please go through it and adjust the values as needed to suit your preferences. See
passing database/vault credentials to RINC.

https://kueue.sigs.k8s.io/
https://help.accuknox.com/how-to/RINC/#minimum-required-database-permissions-for-rinc-to-generate-reports
https://help.accuknox.com/how-to/RINC/#minimum-required-database-permissions-for-rinc-to-generate-reports
https://help.accuknox.com/how-to/RINC/#passing-database-credentials

By default, all reports are disabled and can be enabled by setting enable to true in the
Helm chart values. For example, to enable the RabbitMQ report, set:

config:
 rabbitmq:
 enable: true

If you are using our Accuknox Helm charts, we provide an accuknox-values.yaml file
with most of the values pre-configured.

helm pull oci://public.ecr.aws/k9v9d5v2/accuknox-rinc --version "$VERSION"
tar xvzf "accuknox-rinc-$VERSION.tgz"
less accuknox-rinc/accuknox-values.yaml

RINC supports reading secrets directly from Vault. If you are using Hashicorp's Vault,
please refer to the section on vault.

After customizing the values to your preferences, run the Helm install command
below to deploy RINC in your cluster:

NAMESPACE="accuknox-rinc"

helm upgrade rinc oci://public.ecr.aws/k9v9d5v2/accuknox-rinc \
 --install \
 --namespace "$NAMESPACE" \
 --create-namespace \
 --version "$VERSION" \
 --values values.yaml

To check if everything is healthy, run:

watch kubectl -n "$NAMESPACE" get pod,job,cronjob,secret,configmap

If everything appears healthy and running, congratulations! RINC has been
successfully installed on your cluster.

https://help.accuknox.com/how-to/RINC/#vault-policy

Passing Database Credentials

Database credentials are used for connectivity checks. There are 3 ways to pass your
database credentials to RINC,

1. Using Helm:

Set secretConfig.create to true in the helm values and fill the secrets below to let Helm
create a Kubernetes Secret that is mounted into RINC.

secretConfig:
 create: true
 config:
 mongodb:
 ### ###
 ### REDACTED ###
 ### ###

2. Manually Creating a Secret:

Below is a template for the Secret manifest,

apiVersion: v1
kind: Secret
metadata:
 name: credentials
 namespace: accuknox-rinc
type: Opaque
stringData:
 secret.yaml: |-
 # Please fill in the configuration below if you have set `vault.use` to
 # true above.
 vault:
 auth:
 # vault auth type
 #
 # Possible values: "token", "kubernetes"
 type: ""
 # Token used to authenticate to vault. Required when auth type is set to
 # "token".
 token: ""

 # Role name used to authenticate to vault. Required when auth type is set
 # to "kubernetes".
 role: ""
 # Service-specify credentials.
 #
 # It is recommended to create a dedicated `rinc` user for each of the
 # services.
 mongodb:
 username: ""
 password: ""
 email:
 smtp:
 host: ""
 username: ""
 password: ""
 port: 587
 rabbitmq:
 management:
 # basic auth username for the management api.
 username: ""
 # basic auth password for the management api.
 password: ""
 ceph:
 # ceph reporter uses ceph's dashboard API to scrape ceph status and
 # metrics.
 dashboardAPI:
 # username to authenticate with ceph dashboard API.
 username: ""
 # password to authenticate with ceph dashboard API.
 password: ""
 connectivity:
 neo4j:
 # neo4j basic auth username
 username: ""
 # neo4j basic auth password
 password: ""
 postgres:
 # postgresql auth username.
 username: ""
 # postgresql auth password.
 password: ""
 rds:
 # aws access key id
 accessKeyId: ""
 # aws secret access key
 secretAccessKey: ""
 tokenExpiry:
 # list of token whose expiry need to be checked.
 #
 # It is recommended to NOT specify the token value here as it will remain
 # static. If you are using Vault, you can specify the vault `path` as
 # documented in the `config` section. If you are NOT using Vault, you can
 # use ExternalSecrets that will periodically sync the token value.

 tokens: []
 # - name: ""
 # value: ""
 cloudScan:
 onboardedRegistries:
 postgres:
 # postgresql auth username.
 username: ""
 # postgresql auth password.
 password: ""

kubectl apply -f credentials.yaml

This secret must then be referenced in the helm chart values,

This section is for specifying an existing Kubernetes Secret that the Helm
chart should reference
existingSecret:
 # name of the existing Secret in the Kubernetes cluster
 name: "credentials"
 # key within the Secret, which corresponds to the specific value to be used.
 key: "secret.yaml"

3. Reading credentials directly from Vault

RINC can read credentials directly from Vault. To configure RINC to connect to Vault,
specify the connection details in the Helm values under secretConfig.config.vault and
ensure that secretConfig.create is set to true. Helm will pass the Vault credentials to
RINC via the created Kubernetes Secret, allowing RINC to use these credentials to
connect to Vault and read the remaining credentials directly from it.

See the section on Vault for setting up the required Vault policies.

secretConfig:
 create: true
 config:
 # Please fill in the configuration below if you have set `vault.use` to
 # true above.
 vault:
 auth:
 # vault auth type
 #
 # Possible values: "token", "kubernetes"
 type: ""
 # Token used to authenticate to vault. Required when auth type is set to

https://help.accuknox.com/how-to/RINC/#vault-policy

 # "token".
 token: ""
 # Role name used to authenticate to vault. Required when auth type is set
 # to "kubernetes".
 role: ""

Accessing RINC's web interface

By default, RINC is not exposed to the outside world. To access RINC's web interface,
port-forward to the rinc-web service:

kubectl -n "$NAMESPACE" port-forward svc/rinc-web 8080:80

Now open <http://localhost:8080> in your browser.

An overview of RINC's web interface

If you open RINC's web interface immediately after installation, the reporting cronjob
might not have scheduled yet, so you may see an empty welcome screen instead of
the dashboard. However, don't worry - you can go to the Console by clicking on the
top-right section of the page and start an "on-demand scan".

This will immediately launch a Kubernetes Job to aggregate all the metrics and
generate a report for you. The job will take some time depending on the size of your
cluster and workloads. Once the job is completed, you will see a dashboard similar to
the example above.

An overview of the reports generated by RINC

Above is an example RabbitMQ report.

Every report begins with an Alerts section, displaying any fired alerts. The alerts are
color-coded based on their severity:

1.​ Red - Indicates a critical alert.
2.​ Yellow - Indicates a warning.
3.​ Info - Provides useful information.

Critical alerts typically require immediate action. Warning alerts, if not addressed in
time, may impact operations. Info alerts provide useful details, such as the number of
onboarded registries and nodes.

As a cluster operator, ensure there are no critical alerts.

Note: As described earlier, RINC supports email integration, allowing you to receive
these alerts via email. Refer to the email section in the Helm chart to configure email
integration.

The rest of the report varies depending on the type of report and includes insights
about the cluster/service.

Fetching Old Reports

RINC retains old reports for the duration specified in
config.maintenance.metricsRetention in the Helm values. To retrieve old reports, click on
History at the top-right of the web interface to access the history page.

History Page

On this page, select the desired date to fetch the reports and click Search.

History Search Results - All times are in UTC.

Advanced

Minimum Required Database Permissions for RINC to

Generate Reports

MongoDB:

RW access to the rinc collection

Postgresql:

SELECT access to the following within the cwpp schema (within the accuknox
database) tables,

1.​ registry_scan_details
2.​ registries
3.​ image_scan_details
4.​ registry_configuration
5.​ workspaces
6.​ clusters
7.​ node

The query below creates a user named rinc with SELECT access to the listed tables
under the cwpp schema.

CREATE USER rinc WITH PASSWORD 'tryguessingthis';
GRANT CONNECT ON DATABASE accuknox TO rinc;
GRANT USAGE ON SCHEMA cwpp TO rinc;
GRANT SELECT ON
 cwpp.registry_scan_details,
 cwpp.registries,
 cwpp.image_scan_details,
 cwpp.registry_configuration,
 cwpp.workspaces,
 cwpp.clusters,
 cwpp.nodes
TO rinc;

Neo4j:

Neo4j requires authentication to ping the database. It is recommended you created
a separate database called "rinc" and a user, also called "rinc". This database is not
going to be used and is only present to allow RINC to authenticate with neo4j in
order to test the connectivity.

Vault Policy

If you are using Vault with Kubernetes auth, create a role and attach the necessary
policy to allow reading your configured secrets.

Example, vault policy:

path "/accuknox/k8s/*" {
 capabilities = ["read"]
}

path "/accuknox/aws/*" {
 capabilities = ["read"]
}

path "/accuknox/artifacts/microservices/token" {
 capabilities = ["read"]
}

You also need to bind the role to the service accounts and namespace. RINC helm
charts creates three service accounts. You can list them using,

kubectl -n "$NAMESPACE" get serviceaccounts

You should associate the role with all three service account names.

Once the role is created, refer to it in the Vault section of the Helm chart.

CWPP Troubleshooting

If the user faces any issue related to clusters, then they should provide the logs
information of their clusters for troubleshooting purposes.

Requirements

Getting Kubearmor Sysdump

Users can get the kubeArmor sysdump by using the following command:

karmor sysdump

Getting logs from AccuKnox Agents

Along with KubeArmor Sysdump users will be required to send the logs of AccuKnox
Agents running inside their cluster. To get the logs of each agent use the following
commands:

kubectl logs -n accuknox-agents discovery-engine-xxxx-xxxx > discovery-engine-logs.txt
kubectl logs -n accuknox-agents feeder-service-xxxx-xxx > feeder-service-logs.txt
kubectl logs -n accuknox-agents policy-enforcement-agent-xxxx-xxx > PEA-logs.txt
kubectl logs -n accuknox-agents shared-informer-agent-XXX-XXx > SIA-logs.txt

Note: In the above command replace the xxx-xxxx with your respective pod name
that is running in accuknox-agents namespace.

The users will have to send this Karmor sysdump file and AccuKnox Agents logs to
AccuKnox Solutions team for debugging the issue.

Script To automate this process

●​ This script will save all the output Txt files in a single zip file
●​ karmor sysdump will run independently as it creates a separate zip file on

it’s own

#!/bin/bash

Function to get the pod name for a given deployment
get_pod_name() {
 local namespace=$1
 local deployment=$2
 kubectl get po -n "$namespace" -o=name | grep "$deployment" | awk -F/ '{print $2}'
}

Function to fetch logs for a given pod and save them to a file
fetch_and_save_logs() {
 local namespace=$1
 local pod=$2
 local output_file=$3
 kubectl logs -n "$namespace" "$pod" > "$output_file"
}

Main script starts here

Set your desired namespace here
namespace="accuknox-agents"

Get the pod names and store them in variables
discovery_engine_pod=$(get_pod_name "$namespace" "discovery-engine")
feeder_service_pod=$(get_pod_name "$namespace" "feeder-service")
pea_pod=$(get_pod_name "$namespace" "policy-enforcement-agent")
sia_pod=$(get_pod_name "$namespace" "shared-informer-agent")

Create a temporary directory to store the log files
temp_dir=$(mktemp -d 2>/dev/null || mktemp -d -t 'mytmpdir')

Fetch and save the logs to separate files in the temporary directory
fetch_and_save_logs "$namespace" "$discovery_engine_pod"
"$temp_dir/discovery-engine-logs.txt"
fetch_and_save_logs "$namespace" "$feeder_service_pod" "$temp_dir/feeder-service-logs.txt"
fetch_and_save_logs "$namespace" "$pea_pod" "$temp_dir/PEA-logs.txt"
fetch_and_save_logs "$namespace" "$sia_pod" "$temp_dir/SIA-logs.txt"

Create a ZIP archive of all the log files
zip_file="agents_logs_archive.zip"
zip -j "$zip_file" "$temp_dir"/*.txt

Clean up the temporary directory
rm -rf "$temp_dir"

echo "Logs have been fetched and saved to the ZIP archive: $zip_file"

Execute 'karmor sysdump'
karmor sysdump

echo "karmor sysdump executed."

Users can now send the zip files generated for troubleshooting.

Note: Need to install zip as a pre-requisite in linux before running the above script.

sudo apt install zip

Output

CSPM Troubleshooting Guide

This guide helps troubleshoot onboarding and scanning issues for the Accuknox
CNAPP SaaS deployment across AWS, Azure, and GCP.

Step 1: Validate Prerequisites

Ensure the required permissions are granted to the user or application for the
respective cloud account.

AWS Permissions

1.​ Login to AWS Console.
2.​ Navigate to IAM > Users.
3.​ Select the user created for AccuKnox onboarding.

1.​ Go to the Permissions tab:
●​ Confirm the following policies are attached:

●​ ReadOnlyAccess (AWS Managed - Job Function)
●​ SecurityAudit (AWS Managed - Job Function)

Azure Permissions

1.​ Login to Azure Portal.
2.​ Navigate to App Registrations:

●​ Select the application registered for onboarding.
●​ Go to the API Permissions tab and verify:

●​ Directory.Read.All is listed under Application
Permissions.

1.​ Navigate to Subscriptions:
●​ Select the relevant subscription.
●​ Go to Manage > Access control (IAM).
●​ Verify the registered application has the following roles

assigned:
●​ Security Reader (Job Function Role for subscriptions)
●​ Log Analytics Reader (Job Function Role for

subscriptions)

GCP Permissions

1.​ Login to Google Cloud Console.
2.​ Navigate to IAM & Admin > IAM:

●​ Find the service account created for onboarding.
●​ Verify the following roles are assigned:

a.​ roles/viewer (Viewer Role)
b.​ roles/iam.securityReviewer (Security Reviewer Role)
c.​ roles/logging.viewer (Log Viewer Role)

3.​ Navigate to APIs & Services > Library:
●​ Ensure the following APIs are enabled:

a.​ Compute Engine API
b.​ Identity and Access Management (IAM) API
c.​ Cloud Resource Manager API
d.​ Cloud Functions API
e.​ KMS API
f.​ Kubernetes API
g.​ Cloud SQL Admin API

If permissions and APIs are configured correctly, proceed to the next step.

Refer to the prerequisites for more info:

●​ AWS Onboarding Prerequisites
●​ Azure Onboarding Prerequisites
●​ GCP Onboarding Prerequisites

Step 2: Verify Cloud Scan Status
1.​ Log in to the AccuKnox SaaS platform.
2.​ Navigate to Settings > Cloud Account.
3.​ Select the specific cloud account in question.
4.​ Review the status of the cloud scan:

https://help.accuknox.com/how-to/cspm-prereq-aws/
https://help.accuknox.com/how-to/cspm-prereq-azure/
https://help.accuknox.com/how-to/cspm-prereq-gcp/

	
	Administrator's Guide
	AccuKnox Enterprise Architecture
	Core Components
	Control Plane Architecture
	Cloud Architecture

	Externalized Storage Architecture
	On-Premises Deployment Architecture
	Scaling Considerations
	Key Choke Points
	Noisy Neighbor Mitigation

	Log & Data Storage
	Customer Data Flow
	Rules Engine Architecture
	Integrations Architecture
	Compliance Frameworks
	Additional Resources
	Getting Started With Technical Support
	Roles and Responsibilities

	Product Documentation
	Email Support and Procedures
	Support Workflow
	Priority Levels
	Case Information Required
	Video Conferencing Options
	Case Resolution
	Case Closure
	Resources
	FAQs
	1. Can we engage on a messaging stream for continuous support?
	2. What are the system requirements for On-Prem deployment?
	3. Is a completely air-gapped On-Prem environment supported?
	4. How do upgrades work and how frequently are updates released?

	AccuKnox OnPrem Deployment Guide
	Onboarding Steps for AccuKnox
	Step 1: Hardware & Prerequisites
	Step 2: Staging AccuKnox Container Images (For airgapped environments only)
	Step 3: Installation
	Step 4: Verification/Validation
	High-Level Architecture Overview
	AccuKnox OnPrem k8s components
	Microservices
	Databases
	Secrets Management
	Scaling
	AccuKnox-Agents

	System Requirements
	Worker Node Requirements
	Kubernetes Requirements
	Jump Host
	Jump Host Pre-requisites

	Installation Steps
	Use the following commands
	Use of Private/Local Container Registry (or air-gapped mode)
	Update the override-values.yaml
	Before you start
	If the environment is OpenShift then set:
	If environment is airgapped or using private registry make ssl.certmanager.install:"false"
	Auto-generated self-signed certificate
	Certificate signed by a known authority
	Self-signed certificates (provided by the customer)

	Install AccuKnox base dependencies
	Install AccuKnox pre-chart
	Install AccuKnox microservices chart
	DNS Mapping
	Installing certificates
	Certificates signed by known authority
	Self-signed certificates (provided by customer)

	Install nginx ingress (if any other self-managed Kubernetes)
	Verification of installation

	Runtime Security Prerequisites
	AccuKnox Agents
	Pre-requisites
	Minimum Resource required

	SSO Login Guide
	1. Inviting a New User
	2. User Receives Invitation
	3. User Login Options
	Option A: Traditional Login
	Option B: Single Sign-On (SSO) with Google

	Notes

	Onboarding Assets – High-Level Overview
	Customer Environments
	Cloud Onboarding Options
	Kubernetes – AWS EKS / On-Prem / Fargate
	Risk Assessment
	Runtime Security & Hardening
	Fargate Runtime

	Virtual Machines – EC2 / On-Prem
	Container Registry
	SaaS-Based Scanning
	On-Prem Scanning

	AI/ML Workloads – SageMaker / Bedrock
	Deployment References

	CSPM Pre-requisite for AWS
	AWS Account onboarding
	AWS IAM User Creation
	AWS Onboarding

	Onboarding AWS Organization Accounts to AccuKnox
	Prerequisites
	Step-by-Step Onboarding Process
	1. Initiate Account Onboarding
	2. Configure Organization Account Type and Labels
	3. Enter AWS Organization Details
	4. Enable Auto-Connect & Launch StackSet
	5. Create the Stack in AWS
	6. Wait for StackSet Deployment
	7. Copy Role ARN
	8. Connect in AccuKnox
	9. Confirm Onboarding

	Post-Onboarding

	CSPM Pre-requisite for Azure
	Azure Account onboarding
	Rapid Onboarding (via Azure)
	From AccuKnox SaaS UI

	CSPM Pre-requisite for GCP
	GCP Account onboarding
	From AccuKnox SaaS UI

	How to Deboard a Cloud Account
	Kubernetes Security Onboarding
	Features Supported for Kubernetes
	K8s Runtime Visibility and Security
	K8s Misconfiguration Scanning
	K8s Identity & Entitlements Management
	K8s CIS Benchmarking
	DISA STIGs Support
	In-Cluster Container Image Scanning
	Admission Controller Support
	Cluster Access to Control Plane

	Cluster Onboarding
	AccuKnox Agents

	Cluster Onboarding with Access Keys
	Onboarding
	Step1: Install KubeArmor
	Step2: Install AccuKnox Agents
	Output
	View the workloads

	Onboard Cluster for Misconfiguration Scanning
	CIS Benchmarking Compliance Scan Onboarding
	Step 1: Generate an Access Token
	Step 2: Onboard Your Cluster
	Step 3: Deploy the Scanner Using Helm
	Step 4: View Compliance Findings

	Cluster Offboarding
	Agents Uninstallation
	Sample for Uninstalling Runtime Visibility & Protection agents

	Cluster Deletion

	Runtime Security Deployment for Openshift
	Operator Installation
	ElasticSearch Integration
	Steps to Install
	Username/Password Installation
	CA Certificate Installation

	KubeArmor Instance Installation
	Steps to Install

	Kibana Dashboard Setup
	Steps to Install

	Onboarding and Deboarding VMs with Docker
	Docker
	Resource Requirements
	Network Requirements

	Onboarding
	Install knoxctl/accuknox-cli
	Onboarding Control Plane
	Onboarding Worker Nodes

	Troubleshooting
	Deboarding

	Onboarding and Deboarding VMs with Systemd
	Systemd
	Resource Requirements
	Control Plane Node (Minimum)
	Worker Node (Minimum)

	Network Requirements
	Onboarding
	Install knoxctl/accuknox-cli
	Onboarding Control Plane

	Onboarding Worker Nodes
	Troubleshooting
	Deboarding

	SystemD Based Non-BTF Environments
	Compiling system monitor
	Compile system monitor using Docker (Recommended and reliable)
	Compile system monitor directly (Might not work for some versions)

	Onboard the node

	VM Onboarding using Access Keys
	Overview
	Pre-requisites
	Onboarding
	Install knoxctl/accuknox-cli
	Onboarding Control Plane
	Output

	Onboarding Worker Nodes
	Troubleshooting
	Deboarding

	In-Cluster Image Scanning with Helm
	🛠 Installation Guide
	1. Create a Label
	2. Generate a Token
	3. Schedule and Deploy the Scanner via Helm
	Sample Output

	⚙️ Parameters:
	✅ Post-Installation
	🧪 Scan Status from Cluster

	Dockerhub Registry Onboarding
	Prerequisites
	Personal Account
	Organization Account

	Steps to Add a Registry
	1. Navigate to the Registry Scan Section
	2. Add a New Registry
	3. Provide Registry Details
	4. Authentication Type
	5. Configure Advanced Settings
	Image Updated Within Last
	Image Pulled Within Last
	Name/Tag Pattern:
	Schedule and Certificate

	Viewing Registry Scan Details

	JFrog Container Registry Onboarding
	AccuKnox Support for JFrog Container Registry Scanning
	Scanning an Isolated Registry
	Configuring the JFrog Registry
	Viewing Scan Details

	CWPP Report Generation
	Regex
	Rules for Regular Expression
	Examples

	Reports Configuration
	1. On Demand Report Configuration
	2. Scheduled Report Configuration

	How to Configure Custom Reports
	On-demand custom Report generation
	Scheduling Custom Report

	RINC
	Supported reports
	Installation
	Passing Database Credentials
	1. Using Helm:
	2. Manually Creating a Secret:
	3. Reading credentials directly from Vault

	Accessing RINC's web interface
	An overview of RINC's web interface
	An overview of the reports generated by RINC
	Fetching Old Reports

	Advanced
	Minimum Required Database Permissions for RINC to Generate Reports
	Vault Policy

	CWPP Troubleshooting
	Requirements
	Getting Kubearmor Sysdump
	Getting logs from AccuKnox Agents

	Script To automate this process
	Output

	CSPM Troubleshooting Guide
	Step 1: Validate Prerequisites
	AWS Permissions
	Azure Permissions
	GCP Permissions

	Step 2: Verify Cloud Scan Status

